Содержание

Гемоглобин — одна из мишеней коронавируса COVID-19

Перевод на русский язык компании Logrus Global: https://logrusglobal.ru

COVID-19: атакует 1-бета-цепь гемоглобина и захватывает порфирин, чтобы ингибировать метаболизм человеческого гема.

14 апреля 2020 г.

Скачать PDF-версию

Авторы: Вэньчжун Лю1,2,*, Хуалань Ли2


1 Факультет информатики и инженерии, Сычуаньский инженерно-технический университет, Цзыгун, 643002, Китай;
2 Факультет медико-биологической и пищевой промышленности, Ибиньский университет, Ибинь, 644000, Китай;
* Адрес для переписки: [email protected].

Конспект

Новая коронавирусная пневмония (COVID-19) представляет собой контагиозную острую респираторную инфекцию, вызванную новым коронавирусом. Этот вирус представляет собой РНК-вирус с позитивной полярностью цепи, имеющий высокую степень гомологии с коронавирусом летучей мыши. В этом исследовании для сравнения биологических ролей некоторых белков нового коронавируса использовали анализ консервативных доменов, гомологическое моделирование и молекулярную стыковку. Результаты показали, что белок ORF8 и поверхностный гликопротеин могут связываться с порфирином. В то же время белки orf1ab, ORF10 и ORF3a могут координированно атаковать гем, находящийся на 1-бета-цепи гемоглобина, что приводит к отщеплению железа с образованием порфирина. В результате такой атаки количество гемоглобина, который может переносить кислород и углекислый газ, становится все меньше и меньше. Клетки легких испытывают чрезвычайно сильное отравление и воспаление из-за невозможности обеспечения интенсивного обмена углекислым газом и кислородом; в конечном итоге изображения ткани легких принимают вид матового стекла. Этот механизм также нарушает нормальный анаболический путь гема в организме человека, что, как ожидается, приводит к развитию заболевания. Согласно валидационному анализу полученных результатов, хлорохин может предотвратить атаку белков orf1ab, ORF3a и ORF10 на гем с образованием порфирина и в определенной степени ингибировать связывание ORF8 и поверхностных гликопротеинов с порфиринами, эффективно облегчая симптомы респираторного дистресса. Поскольку способность хлорохина ингибировать структурные белки не слишком велика, терапевтический эффект для разных людей может быть различным. Фавипиравир может ингибировать связывание белка оболочки и белка ORF7a с порфирином, предотвращать проникновение вируса в клетки-хозяева и может связывать свободный порфирин. Данная работа предназначена только для научного обсуждения, правильность выводов должна быть подтверждена другими лабораториями. В связи с побочными действиями таких препаратов, как хлорохин, и возможностью аллергических реакций на них, обращайтесь к квалифицированному врачу для получения подробной информации о лечении и не принимайте препарат самостоятельно.

Ключевые слова: новый коронавирус; респираторный дистресс; вид матового стекла изображения легкого; гликопротеин E2; ОRF8; оrf1ab; хлорохин; кровь; диабетический; флуоресцентный резонансный энергоперенос; древний вирус; цитокиновый шторм.

1. Введение

Новая коронавирусная пневмония (COVID-19) — контагиозное острое респираторное инфекционное заболевание. Пациенты с коронавирусной пневмонией страдают от лихорадки с температурой выше 38 градусов с такими симптомами, как сухой кашель, усталость, одышка, затрудненное дыхание, при визуализации легких они имеют вид матового стекла1-3. При морфологическом исследовании образцов тканей можно обнаружить большое количество слизи без явных вирусных включений. Эта пневмония была впервые обнаружена в декабре 2019 года на южнокитайском рынке морепродуктов провинции Хубэй, Китай4. Инфекция имеет высокую контагиозность5,6. Сейчас количество инфицированных людей достигло десятков тысяч по всему миру, и распространение инфекции не ограничено расой и границами. Исследователи провели тесты на выделение вирусов и секвенирование нуклеиновых кислот, чтобы подтвердить, что заболевание было вызвано новым коронавирусом7,8. Отмечено, что нуклеиновая кислота нового коронавируса представляет собой РНК с позитивной полярностью цепи8. Его структурные белки включают: белок-шип (S), белок оболочки (E), мембранный белок (M) и нуклеокапсидный фосфопротеин. Транскрибируемые неструктурные белки включают: orf1ab, ORF3a, ORF6, ORF7a, ORF10 и ORF8. Новый коронавирус высоко гомологичен коронавирусу летучих мышей9,10 и обладает значительной гомологией по отношению к вирусу SARS11,12. Исследователи изучили функцию структурных белков и некоторых неструктурных белков нового коронавируса13,14. Но новый коронавирус обладает целым набором потенциальных геномных характеристик, часть которых в основном является причиной вспышки в человеческой популяции15,16. Например, CoV EIC (белок оболочки коронавируса с функцией ионного канала) участвует в модулировании высвобождения вириона и взаимодействия «CoV — хозяин»17. Шип-белки, белки ORF8 и ORF3a значительно отличаются от белков других известных SARS-подобных коронавирусов, и они могут вызывать более серьезные различия в патогенности и передаче по сравнению с известными для SARS-CoV18. Более ранние исследования показали, что новый коронавирус проникает в эпителиальные клетки с использованием шип-белка, взаимодействующего с рецепторным белком ACE2 человека на поверхности клетки, что и вызывает инфекцию у людей. Однако структурный анализ шип-белка (S) нового коронавируса показывает, что белок S лишь слабо связывается с рецептором ACE2 по сравнению с коронавирусом SARS19. Из-за ограничений существующих экспериментальных методов специфические функции вирусных белков, таких как ORF8 и поверхностный гликопротеин, до сих пор неясны. Механизм патогенности нового коронавируса остается загадочным20.

В литературе21 описаны показатели биохимического исследования 99 пациентов с вызванной новым коронавирусом пневмонией, и в этом отчете отражены аномалии связанных с гемоглобином показателей биохимических анализов пациентов. Согласно отчету, количество гемоглобина и нейтрофилов у большинства пациентов снизилось, а индексные значения сывороточного ферритина, скорости оседания эритроцитов, С-реактивного белка, альбумина и лактатдегидрогеназы у многих пациентов значительно возросли. Эти изменения предполагают, что содержание гемоглобина у пациента уменьшается, а гема увеличивается, и организм будет накапливать слишком много вредных ионов железа, что вызовет воспаление в организме и увеличит уровни С-реактивного белка и альбумина. Клетки реагируют на стресс, вызванный воспалением, производя большое количество сывороточного ферритина для связывания свободных ионов железа, чтобы уменьшить повреждения. Гемоглобин состоит из четырех субъединиц, 2-α и 2-β, и каждая субъединица имеет железосодержащий гем22,23. Гем является важным компонентом гемоглобина. Это порфирин, содержащий железо. Структура без железа называется порфирином. Когда железо находится в двухвалентном состоянии, гемоглобин может отщеплять углекислый газ и связывать атомы кислорода в альвеолярных клетках, при этом железо окисляется до трехвалентного уровня. Когда гемоглобин становится доступен другим клеткам организма через кровь, он может высвобождать атомы кислорода и присоединять углекислый газ, а железо восстанавливается до двухвалентного.

Особо эффективных лекарств и вакцин для борьбы с болезнью, вызванной новым коронавирусом, не существует24. Однако в недавних поисках клинических методов лечения было обнаружено несколько старых препаратов, которые могут подавлять некоторые функции вируса, например, хлорохина фосфат оказывает определенное влияние на новую коронавирусную пневмонию25. Хлорохина фосфат — это противомалярийный препарат, который применяется в клинике уже более 70 лет. Эксперименты показывают, что эритроциты, инфицированные возбудителем малярии, могут накапливать большое количество хлорохина. Препарат приводит к потере фермента гемоглобина и смерти паразита из-за недостаточности аминокислот для его роста и развития. Предполагается, что терапевтический эффект хлорохина фосфата в отношении новой коронавирусной пневмонии может быть тесно связан с аномальным метаболизмом гемоглобина у человека. Между тем мы можем отметить, что хлорохин также широко используется для лечения порфирии26,27.

Поэтому мы предположили, что присоединение вирусных белков к порфиринам вызовет ряд патологических реакций у человека, таких как снижение уровня гемоглобина. Из-за тяжелой эпидемии и существующих условий с ограниченными экспериментальными методами тестирования функций белков большое научное значение имеет анализ функции белков нового коронавируса методами биоинформатики.

В этом исследовании для анализа функций белков, связанных с вирусом, использовались методы прогнозирования консервативных доменов, гомологического моделирования и молекулярной стыковки. Это исследование показало, что белок ORF8 и поверхностный гликопротеин способны объединяться с порфирином с образованием комплекса, в то время как белки orf1ab, ORF10, ORF3a скоординировано атакуют гем на 1-бета-цепи гемоглобина и отщепляют железо с образованием порфирина. Этот механизм вируса подавляет нормальный метаболический путь гема и приводит к проявлению у людей симптомов заболевания. Основываясь на результатах вышеупомянутых исследований, с помощью технологии молекулярной стыковки мы также проверили то, каким образом хлорохина фосфат и фавипиравир могут быть полезны в клинической практике.

2. Материалы и методы
2.1. Набор данных

Следующие последовательности белка загружали из NCBI: все белки нового коронавируса Ухань, гем-связывающий белок; гемоксидаза; для анализа консервативного домена использовали белковые последовательности.

Все белки нового коронавируса Ухань также использовали для конструирования трехмерных структур путем гомологического моделирования.

В то же время следующие файлы были загружены из базы данных PDB: кристаллическая структура MERS-CoV nsp10_nsp16 комплекс—5yn5, гем, оксигемоглобин человека 6bb5; дезоксигемоглобин человека 1a3n; 0TX; Rp. Комплекс MERS-CoV nsp10_nsp16—5yn5 использовался для гомологического моделирования. Гем, 0TX и 1RP использовались для молекулярной стыковки. Два оксигемоглобин был использован для стыковки белков.

2.2. Блок-схема биоинформационного анализа

На основе опубликованных в данном исследовании биологических белковых последовательностей была проведена серия биоинформационного анализа. Этапы показаны на рисунке 1:1. Консервативные домены вирусных белков анализируются28-30 онлайн-сервером МЕМЕ. Консервативные домены использовались для прогнозирования функциональных различий вирусных белков и белков человека. 2. Трехмерная структура вирусных белков была построена путем гомологического моделирования в средстве Swiss-model31,32. Если длина последовательности превышала 5000 нуклеотидов, использовался инструмент гомологического моделирования Discovery-Studio 2016. 3. Использование технологии молекулярной стыковки (инструмент LibDock) Discovery-Studio 201633 позволило смоделировать рецептор-лигандное соединение вирусных белков с гемом человека (или порфиринами). С учетом результатов биоинформационного анализа была построена модель жизненного цикла вируса и предложена соответствующая молекулярная картина заболевания.

Рисунок 1. Блок-схема биоинформационного анализа.

Рабочий процесс основан на эволюционных принципах. Хотя биологическая последовательность, характерная для развитых форм жизни и вируса, отличается, молекулы с аналогичными структурами всегда могут играть аналогичные биологические роли. В методе гомологического моделирования используется принцип, согласно которому аналогичная первичная структура белковых последовательностей имеет аналогичную пространственную структуру. Метод молекулярной стыковки построен на гомологическом моделировании реальных трехмерных молекул.

2.3. Анализ консервативного домена

MEME Suite — это онлайн-сайт, который объединяет множество инструментов прогнозирования и описания мотивов. Алгоритм максимального ожидания (EM) является основой для идентификации мотива на сайте MEMЕ. Мотив представляет собой консервативный домен небольшой последовательности в белке. Модели, основанные на мотивах, помогают оценить надежность филогенетического анализа. После открытия онлайн-инструмента MEME интересующие белковые последовательности объединяют в текстовый файл, при этом сохраняется формат файла .fasta. Затем выбирают нужное количество мотивов и нажимают кнопку «Перейти». В конце анализа консервативные домены отображаются после нажатия на ссылку.

2.4. Гомологическое моделирование

SWISS-MODEL — это полностью автоматический сервер гомологического моделирования структуры белка, доступ к которому можно получить через веб-сервер. Первый шаг — войти на сервер SWISS-MODEL, ввести последовательность и нажать Search Template («Поиск шаблона»), чтобы выполнить простой поиск шаблона. После завершения поиска можно выбрать шаблон для моделирования. Поиск шаблонов выполняется нажатием кнопки Build Model, и модель шаблона выбирается автоматически. Как видно, было найдено несколько шаблонов, а затем построено множество моделей. Здесь выбирается только модель. Модель в формате PDB загружается и визуализируется в VMD. SWISS-MODEL моделирует только белковые модели, соответствующие последовательностям менее 5000 нуклеотидных оснований. Для моделирования белка, соответствующего последовательности более 5000 нуклеотидов, можно использовать инструмент гомологического моделирования Discovery-Studio.

Перед использованием Discovery-Studio для гомологического моделирования неизвестного белка (такого, как orf1ab) файл структуры pdb матричного белка, такого как MERS-CoVnsp10_nsp16 комплекс 5yn5, должен быть загружен из базы данных PDB. Затем для сопоставления гомологичных последовательностей белков 5yn5 и orf1ab был применен инструмент сопоставления последовательностей Discovery-Studio. Затем был построен файл пространственной структуры orf1ab на основе матричного белка 5yn5.

2.5. Технология молекулярной стыковки

Молекулярная стыковка — это процесс нахождения наилучшего соответствия между двумя или более молекулами посредством определения геометрического и энергетического соответствия. Этапы использования молекулярной стыковки LibDock с Discovery-Studio следующие:

1. Подготовка модели лиганда. Откройте файл лиганда, например, гема, и нажмите кнопку Prepare Ligands («Подготовка лигандов») в подменю Dock Ligands («Док-лиганды») меню Receptor-Ligand Interactions («Взаимодействие рецептор-лиганд»), чтобы создать модель лиганда гема для стыковки. Сначала удалите FE (атом железа) из гема, а затем нажмите кнопку Prepare Ligands («Подготовка лигандов»), после чего будет сгенерирована модель лиганда порфирина. При открытии 0 XT снова нажмите кнопку Prepare Ligands («Подготовка лигандов»), чтобы получить модель хлорохинового лиганда.

2. Подготовьте модель белкового рецептора. Откройте файл pdb белка (сгенерированный с помощью гомологического моделирования) и нажмите Prepare protein («Подготовка белка») в подменю Dock Ligands («Док-лиганды») меню Receptor-Ligand Interactions («Взаимодействие рецептора с лигандом»), чтобы создать модель рецептора белка для стыковки.

3. Установите параметры стыковки для ее достижения. Выберите модель генерируемого белкового рецептора. В подменю Define and Edit Binding Site («Определение и редактирование сайта связывания») в меню Receptor-Ligand Interactions («Взаимодействие рецептора с лигандом») нажмите кнопку From receptor Cavities («Из полостей рецептора»). На диаграмме модели рецептора белка появляется красная сфера. После щелчка правой кнопкой мыши по красному шару можно изменить его радиус. Затем в меню Receptor-Ligand Interactions («Взаимодействие рецептора с лигандом») выберите Dock Ligands (LibDock) («Док-лиганды LibDock») в подменю Dock Ligands («Док-лиганды»). Во всплывающем окне выберите лиганд в качестве вновь созданной модели лиганда (ALL) и выберите рецептор в качестве вновь созданной модели рецептора (ALL), а для сфер сайтов задайте только что установленные координаты сфер. Наконец, нажмите RUN («Выполнить»), чтобы начать стыковку.

4. Рассчитайте энергию связывания и выберите положение с наибольшей энергией связывания. После завершения стыковки будет отображено множество местоположений лиганда. Откройте окно стыковки и нажмите кнопку Caculate Binding Energies («Рассчитать энергии связывания») в подменю Dock Ligands («Док-лиганды») меню Receptor-Ligand Interactions («Взаимодействие рецептора с лигандом»). Во всплывающем окне выберите рецептор в качестве значения по умолчанию, лиганд в качестве стыкуемой модели (ALL), а затем запустите вычисление энергии связывания. Наконец, сравните энергию связывания и выберите положение с наибольшей энергией связывания. Чем выше стабильность комплекса, тем больше энергия связывания.

5. Экспортируйте вид совместного сечения. Для вида в состоянии стыковки после установки стиля отображения области связывания нажмите кнопку Show 2D Map («Показать 2D-карту») в подменю View Interaction («Просмотр взаимодействия») меню Receptor-Ligand Interaction («Взаимодействие между рецептором и лигандом»), чтобы открыть вид участка связывания. Это представление может быть сохранено в виде файла изображения.

2.6. Технология стыковки белков

ZDOCK от Discovery-Studio — это еще один инструмент молекулярной стыковки для изучения взаимодействий белков. Мы использовали его для изучения атаки гемоглобина вирусными неструктурными белками. Ниже приведено описание стыковки orf1ab и гемоглобина, при изучении стыковки с другими неструктурными белками вируса применяли аналогичные методы стыковки. После открытия PBD-файлов человеческого оксигемоглобина 6bb5 и белка orf1ab нажмите кнопку Dock proteins (ZDOCK) в меню Dock and Analyze Protein Comlexes («Стыковка и анализ белковых комплексов»). Во всплывающем интерфейсе выберите человеческий оксигемоглобин 6bb5 в качестве рецептора, а orf1a в качестве лиганда, а затем нажмите кнопку Run («Выполнить»). После того как компьютер закончит вычисления, нажмите на интерфейс proteinpose («положение белка») и выберите положение и кластер с самым высоким баллом ZDOCK. Так можно получить положение белка orf1ab на человеческом оксигемоглобине 6bb5. Дезоксигемоглобин человека 1a3n имеет сходную схему стыковки с белком orf1ab.

3. РЕЗУЛЬТАТЫ
3.1. Вирусные структурные белки, связывающие порфирин

У человека гемоглобин может разлагаться на глобин и гем. Гем состоит из порфирина и иона железа, при этом ион железа находится в середине порфирина. Гем нерастворим в воде и может быть объединен с гем-связывающими белками с образованием комплекса и транспортироваться в печень. Порфирин разлагается до билирубина и выводится через желчный проток, а железо, содержащееся в молекуле, может повторно использоваться организмом. Если вирусные белки могут связываться с порфирином гема, они должны обладать связывающей способностью, аналогичной гем-связывающему белку человека, то есть вирусные белки и гем-связывающие белки должны иметь аналогичные консервативные домены. Для изучения связывания структурных белков вируса и порфирина в настоящей работе были применены следующие методы биоинформатики.

Сначала на онлайн-сервере MEME был выполнен поиск консервативных доменов в каждом структурном белке вируса и человеческом гем-связывающем белке (ID:NP_057071.2 гем-связывающий белок 1, ID: EAW47917.1 гем-связывающий белок 2). На рисунке 2 показано, что три вирусных белка (поверхностный гликопротеин, белок оболочки и нуклеокапсидный фосфопротеин) и белки связывания гема имеют консервативные домены, но мембранный гликопротеин не имеет консервативных доменов, p-значения малы, различия статистически значимы. Домены в трех вирусных белках различны, что позволяет предположить некоторое различие способностей структурных белков связывать порфирин. Мембранный гликопротеин не может связываться с порфирином.

Рисунок 2. Консервативные домены в структурных белках и гем-связывающих белках человека. A. Консервативные домены поверхностного гликопротеина. B. Консервативные домены белка оболочки. C. Консервативные домены мембранного гликопротеина. D. Консервативные домены нуклеокапсидного фосфопротеина.

Затем онлайн-сервер Swiss-model смоделировал поверхностные гликопротеины для получения трехмерной структуры, и были выбраны два вида файлов на основе шаблонов Spike и E2. 3D-структурный файл гема был загружен из базы данных PDB.

В конце концов Discovery-Studio реализовала молекулярную стыковку поверхностных гликопротеинов и порфирина. Сначала не удалось стыковать белок-шип с гемом (и порфирином). Гликопротеин Е2 (рисунок 3.A) получен из матриц 1zva.1.A. Стыковка гликопротеина Е2 и гема также была безуспешной. Когда удалили ион железа и гем стал порфирином, удалось выполнить множество видов стыковки между гликопротеином E2 и порфирином. После вычисления энергии связывания за результат была принята позиция стыковки с самой высокой энергией связывания (7 530 186 265,80 ккал/моль). Результат стыковки показан на рисунке 4.A-1, где представлена молекулярная модель связывания гликопротеина E2 с порфирином.

На рисунке 4.A-2 представлен двухмерный вид участка связывания, в котором 18 аминокислот гликопротеина Е2 взаимодействуют с порфирином.

При анализе белка оболочки использовались те же методы. Шаблон 5×29.1. A был выбран в качестве шаблона 3D-структуры белка оболочки (рисунок 3.B). Discovery-Studio обнаружила несколько видов стыковки белка оболочки и порфирина, где было выбрано положение стыковки с самой высокой энергией связывания (219 317,76 ккал/моль). На рисунке 4.B-1 показан результат стыковки, представляющий собой молекулярную модель связывания белка оболочки с порфирином. Рисунок 4.В-2 представляет двухмерный вид участка связывания, в котором 18 аминокислот белка оболочки взаимодействуют с порфирином.

Те же методы использовались для анализа нуклеокапсидного фосфопротеина. В качестве шаблона фосфопротеина нуклеокапсида использовали 1ssk.1.А (рисунок 3.С). Discovery-Studio позволила выявить вариант стыковки между нуклеокапсидным фосфопротеином и порфирином с самой высокой энергией связывания (15 532 506,53 ккал/моль). На рисунке 4.С-1 показан результат стыковки, представляющий собой молекулярную модель связывания нуклеокапсидного фосфопротеина с порфирином. На рисунке 4.C-2 представлен двухмерный вид связывающего участка, где 22 аминокислоты нуклеокапсидного фосфопротеина связаны с порфирином. Мембранный белок получен из шаблонов 1zva.1.A. Состыковать мембранный белок с гемом (и порфирином) не удалось. Полученные результаты свидетельствуют, что поверхностный гликопротеин, белок оболочки и нуклеокапсидный фосфопротеин могут связываться с порфирином с образованием комплекса.

Было обнаружено, что энергия связывания белка оболочки была самой низкой, энергия связывания гликопротеина Е2 была самой высокой, а энергия связывания нуклеокапсидного фосфопротеина была средней. Это означает, что связывание гликопротеина Е2 с порфирином является наиболее стабильным, связывание нуклеокапсидного фосфопротеина с порфирином является неустойчивым, а связывание белка оболочки с порфирином является наиболее неустойчивым.

После этого был проведен следующий анализ, чтобы выяснить, атакуют ли структурные белки гем с отщеплением атома железа и образованием порфиринов. Гем имеет оксидазу, называемую гемоксидазой, которая окисляет гем и отщепляет ион железа. Если структурные белки могут атаковать гем и отщеплять ионы железа, они должны иметь такой же консервативный домен, как гемоксидаза. Онлайн-сервер MEME был использован для поиска консервативных доменов структурных белков и белков гемоксидазы (NP_002124.1: гемоксигеназы-1; BAA04789.1: гемоксигеназы-2; AAB22110.2: гемоксигеназы-2). В результате консервативных доменов структурных белков обнаружено не было (рисунок 5). Объединяя этот результат с результатом предыдущего анализа, можно предположить, что структурные белки могут объединяться только с порфирином. Можно сделать вывод, что структурные белки не атакуют гем, вызывая диссоциацию атома железа с образованием порфирина.

Рисунок 3. Трехмерные структурные схемы новых белков коронавируса, полученные с помощью гомологического моделирования. A. Гликопротеин E2 поверхностного гликопротеина. B. Белок оболочки. C. Нуклеокапсидный фосфопротеин. D. Белок orf1ab. E. Белок ORF8. F. Белок ORF7a.

Рисунок 4. Результаты молекулярной стыковки структурных белков вируса и порфирина (красная структура). A. Результаты молекулярной стыковки гликопротеина E2 и порфирина. B. Результаты молекулярной стыковки белка оболочки и порфирина. C. Результаты молекулярной стыковки нуклеокапсидного фосфопротеина и порфирина. 1. Структурные белки вируса. 2. Вид участков связывания.

Рисунок 5. Консервативные домены структурных белков и белков гемоксигеназы человека. A. Консервативные домены поверхностного гликопротеина. B. Консервативные домены белка оболочки. C. Консервативные домены мембраны. D. Консервативные домены нуклеокапсидного фосфопротеина.

3.2. Неструктурные белки вируса, связывающие порфирин

Сначала на онлайн-сервере MEME был выполнен поиск консервативных доменов в каждом структурном белке вируса и человеческом гем-связывающем белке (ID:NP_057071.2 гем-связывающий белок 1, ID: EAW47917.1 гем-связывающий белок 2). На рисунке 2 показано, что три вирусных белка (поверхностный гликопротеин, белок оболочки и нуклеокапсидный фосфопротеин) и белки связывания гема имеют консервативные домены, но мембранный гликопротеин не имеет консервативных доменов, p-значения малы, различия статистически значимы. Домены в трех вирусных белках различны, что позволяет предположить некоторое различие способностей структурных белков связывать порфирин. Мембранный гликопротеин не может связываться с порфирином.

Рисунок 6. Консервативные домены в неструктурных белках и гем-связывающих белках человека. A. Консервативные домены orf1ab. B. Консервативные домены ORF3a. C. Консервативные домены ORF6. D. Консервативные домены ORF7a. E. Консервативные домены ORF8. F. Консервативные домены ORF10.

Гомологическое моделирование и технология молекулярной стыковки были применены для изучения способности белка orf1ab связывать гем. Поскольку Swiss-model не может моделировать 3D-структуру белковой последовательности orf1ab из-за ограничения на длину кодирующей последовательности (не более 5000 нуклеотидов), для гомологического моделирования использовалась программа Discovery-Studio. Кристаллическая структура комплекса MERS-CoV nsp10_nsp16 5yn5 и гема была загружена из базы данных PDB. В этом исследовании кристаллическая структура комплекса MERS-CoV nsp10_nsp16 5yn5 была взята в качестве матрицы для создания гомологичной структуры белка orf1ab. В качестве 3D-структуры белка orf1ab была выбрана гомологичная структура по умолчанию (рисунок 3.D). Затем в программе Discovery-Studio была проведена молекулярная стыковка белка orf1ab и порфирина. Белок orf1ab и гем не удалось состыковать, но после удаления ионов железа и превращения гема в порфирин радиус действия увеличился и несколько типов стыковки удалось довести до конца. Путем вычисления энергии связывания была выбрана модель стыковки с наибольшей энергией связывания (561 571,10 ккал/моль). Результат стыковки показан на рисунке 7.A-1, где представлена молекулярная модель связывания белка orf1ab с порфирином. Связывающая часть белка orf1ab действует как зажим. Именно этот зажим захватывает порфирин без иона железа. На рисунке 7.A-2 показан двухмерный вид участка связывания. Видно, что 18 аминокислот белка orf1ab связаны с порфирином.

Для изучения свойств связывания белка ORF8 с гемом использовались те же этапы анализа, что и для структурного белкового метода. Файл структуры был создан на основе шаблона ORF7 (рисунок 3. E). Было обнаружено несколько видов стыковки белка ORF8 и порфирина, из которых выбрано стыковочное положение, имеющее наибольшую энергию связывания (12 804 859,25 ккал/моль). Результат стыковки (рисунок 7.В-1) представляет собой молекулярную модель связывания белка ORF8 с порфирином. Рисунок 7.В-2 представляет собой двухмерный вид участка связывания, где 18 аминокислот ORF8 связаны с порфирином.

Для анализа белка ORF7a использовались те же методы, что и при анализе белка ORF8. Шаблон ORF7a — 1yo4.1.A (рис. 3.F). Белок ORF7a и порфирин имели наивысшую энергию связывания (37 123,79 ккал/моль). На рисунке 7.С-1 показана молекулярная модель связи ORF7a с порфирином. Пятнадцать аминокислот ORF7a связаны с порфирином (рис. 7.C-2). Связывающая часть белка ORF7a также действует как зажим.

Swiss-модель не может предоставить шаблон для ORF10. ORF6a и ORF3a получены из шаблонов 3h08.1.A и 2m6n.1.A соответственно, но состыковать ORF6a (ORF3a) с гемом и порфирином не удалось.

Рисунок 7. Результаты молекулярной стыковки неструктурных белков вируса и порфирина (красный). A. Результаты молекулярной стыковки белка orf1ab и порфирина. B. Результаты молекулярной стыковки для белка ORF8 и порфирина. C. Результаты молекулярной стыковки белка ORF7a и порфирина. 1. Неструктурные белки вируса. 2. Вид участков связывания.

Наконец, был проведен следующий анализ, чтобы выяснить, могли ли неструктурные белки атаковать гем и отщеплять атом железа с образованием порфиринов. Здесь для анализа консервативных доменов неструктурных белков и белков гемоксидазы использовался тот же метод, что и для предыдущего структурного белка — онлайн-сервер MEME (NP_002124.1: гемоксигеназа-1; BAA04789.1: гемоксигеназа-2; AAB22110.2: гемоксигеназа-2). Как показано на рисунке 8, ORF10, orf1ab и ORF3a имеют консервативные домены. Учитывая результаты предыдущего анализа, можно сказать, что неструктурные белки ORF10, orf1ab и ORF3a могут атаковать гем и отщеплять атом железа с образованием порфирина. Однако р-значение для orf1ab и ORF3a больше, чем 0,1 %. Поэтому ORF10 может быть основным белком, атакующим гем, тогда как orf1ab и ORF3a захватывают гем или порфирин.

Результаты показали, что orf1ab, ORF7a и ORF8 могут связываться с порфирином, в то время как ORF10, ORF3a и ORF6 не могут связываться с гемом (и порфирином). ORF10, ORF1ab и ORF3a также обладают способностью атаковать гем с образованием порфирина. Энергии связывания orf1ab, ORF7a, ORF8 и порфирина сравнивали между собой. Было обнаружено, что энергия связывания ORF7a была самой низкой, энергия связывания ORF8 была самой высокой, а энергия связывания orf1ab была средней. Это означает, что связывание ORF8 с порфирином является наиболее стабильным, связывание orf1ab с порфирином является неустойчивым, а связывание ORF7a с порфирином является наиболее неустойчивым. Последовательности ORF10 и ORF6 короткие, поэтому они должны быть короткими сигнальными пептидами. Следовательно, механизм, с помощью которого неструктурные белки атакуют гем, может быть такой: ORF10, ORF1ab и ORF3a атакуют гем и образуют порфирин; ORF6 и ORF7a отправляют порфирин в ORF8; и ORF8 и порфирин образуют стабильный комплекс.

Рисунок 8. Консервативные домены неструктурных белков и белков гемоксигеназы человека. A. Консервативные домены orf1ab. B. Консервативные домены ORF3a. C. Консервативные домены ORF6. D. Консервативные домены ORF7a. E. Консервативные домены ORF8. F. Консервативные домены ORF10.

3.3. Вирусный неструктурный белок атакует гем на бета-цепи гемоглобина

Порфирины в организме человека — это в основном железосодержащие порфирины, то есть гем. Большая часть молекул гема не свободна, а связана в составе гемоглобина. Для выживания вирусов им требуется большое количество порфиринов. Поэтому новый коронавирус нацелен на гемоглобин, атакует гем и охотится на порфирины. Результаты предыдущего анализа показали, что ORF1ab, ORF3a и ORF10 имеют домены, сходные с гемоксигеназой, но только ORF1ab может связываться с порфирином. Чтобы изучить атакующее поведение белков orf1ab, ORF3a и ORF10, мы использовали технологию молекулярной стыковки ZDOCK. Технология молекулярной стыковки ZDOCK позволяет анализировать взаимодействия белков и находить приблизительные положения этих трех белков на гемоглобине.

Сначала мы загрузили гемоксигеназу 2 (5UC8) из PDB и использовали ее в качестве шаблона, а затем использовали инструмент гомологического моделирования Discovery-Studio для создания трехмерной структуры ORF10 (рисунок 9). Поскольку гемоглобин имеет две формы: окисленную и восстановленную, в приведенном ниже анализе выполнена молекулярная стыковка белков в этих двух случаях, а в качестве результата принята позиция с наивысшей оценкой ZDOCK.

Рисунок 9. Моделирование гомологии ORF10.

На дезоксигемоглобине orf1ab располагается в нижне-среднем участке 1-альфа- и 2-альфа-цепи вблизи 2-альфа-цепи (рисунок 10.A). ORF3a располагается в нижне-среднем участке 1-альфа и 2-альфа-цепи вблизи 2-альфа цепи (рисунок 10.B). ORF10 располагается в нижне-средней части 1-бета- и 2-бета-цепи вблизи 1-бета-цепи (рисунок 10. C). Предполагается следующий механизм: orf1ab атакует 2-альфа-цепь, вызывая изменения конформации белка глобина. Связывание ORF3A с цепью 2-альфа приводит к атаке ею цепи 1-бета, открывающей гем. ORF10 быстро присоединяется к 1-бета-цепи и непосредственно воздействует на гем 1-бета-цепи. Когда атом железа отщепляется, гем превращается в порфирин, и orf1ab получает возможность захватить порфирин. Белок orf1ab играет критически важную роль на протяжении всей атаки.

Рисунок 10. Вирусный неструктурный белок атакует гемоглобин. A. orf1ab атакует дезоксигемоглобин. B. ORF3a атакует дезоксигемоглобин. C. ORF10 атакует дезоксигемоглобин. D. orf1ab атакует окисленный гемоглобин. E. ORF10 атакует окисленный гемоглобин. F. ORF3a атакует окисленный гемоглобин.

На окисленном гемоглобине orf1ab располагается в нижне-средней части альфа- и бета-цепи вблизи альфа-цепи (рисунок 10.A). ORF10 располагается в нижней части бета-цепи, ближе к внешней (рисунок 10. B). ORF3a располагается в нижне-средней части альфа- и бета-цепи и приближен к бета-цепи (рисунок 10.C). Возможный механизм состоит в том, что orf1ab связывается с альфа-цепью и атакует бета-цепь, вызывая конфигурационные изменения в альфа- и бета-цепях; ORF3 атакует бета-цепь и обнажает гем. ORF10 быстро прикрепляется к бета-цепи и непосредственно влияет на атомы железа в геме бета-цепи. Гем после отщепления железа превращается в порфирин, и orf1ab получает возможность захватить порфирин. Белок orf1ab играет ключевую роль на протяжении всей атаки.

Атака вирусных белков на оксигемоглобин приводит к прогрессирующему уменьшению количества гемоглобина, который может переносить кислород. Влияние вирусных белков на дезоксигемоглобин будет еще сильнее уменьшать количество гемоглобина, доступного для переноса диоксида углерода и глюкозы крови. Люди с диабетом могут иметь нестабильный уровень глюкозы крови. Состояние пациента дополнительно ухудшается от отравления диоксидом углерода. Клетки легких испытывают чрезвычайно сильное воспаление из-за невозможности обеспечения интенсивного обмена углекислым газом и кислородом; в конечном итоге изображения ткани легких принимают вид матового стекла. Состояние пациентов с респираторными расстройствами ухудшится.

3.4. Валидация воздействия хлорохина фосфата

Химические компоненты хлорохина фосфата конкурируют с порфирином и связываются с вирусным белком, тем самым ингибируя атаку вирусного белка на гем или связывание с порфирином. Для проверки влияния хлорохина фосфата на молекулярный механизм действия вируса была принята технология молекулярной стыковки. Структурный файл 0TX (хлорохин) был загружен из базы данных PDB. Затем была использована технология молекулярной стыковки Discovery-Studio 2016 для тестирования эффектов вирусных белков и хлорохина.

Рисунок 11.A-1 представляет собой схему связывания хлорохина с поверхностным гликопротеином вируса. На рисунке 11.A-2 показана область связывания вирусного поверхностного гликопротеина. В связывании участвуют 13 аминокислот. Энергия связывания хлорохина с гликопротеином Е2 вируса составляет 3 325 322 829,64 ккал/моль, что составляет около половины энергии связывания гликопротеина Е2 и порфирина. Согласно результатам рис. 4.А-2, дальнейший анализ показал, что некоторые аминокислоты (например, VAL A:952, ALA A:956, ALA B:956, ASN A:955 и др.) гликопротеина Е2 могут связываться не только с хлорохин-фосфатом, но и с порфиринами. Другими словами, хлорохин имеет одну треть шансов ингибировать вирусный гликопротеин E2 и уменьшить симптомы у пациента.

Вид связывания хлорохина и белка оболочки показан на рисунке 11.В-1. Энергия связывания хлорохина и белка оболочки 7852,58 ккал/моль, что эквивалентно лишь 4 % энергии связывания белка оболочки и порфирина. Участок связывания показан на рисунке 11.B-2. На рисунках 4.В-2 и 11.В-2 представлены некоторые аминокислоты (такие, как LEV E:28, PHE: D:20, VAL E:25) белка оболочки, которые связываются не только с хлорохин-фосфатом, но и с порфирином.

Рисунок 11.С-1 представляет собой схему связывания хлорохина с фосфопротеином нуклеокапсида. Энергия связывания хлорохина с нуклеокапсидным фосфопротеином составляет 198 815,22 ккал/моль, что эквивалентно лишь 1,4 % энергии связывания нуклеокапсидного фосфопротеина и порфирина. ALA A:50 и т. д. нуклеокапсида фосфопротеина участвуют в связывании (рисунок 12.C-2). Рисунки 4.C-2 и 11.C-2 свидетельствуют о том, что аминокислоты нуклеокапсидного фосфопротеина могут связывать порфирин, но не могут связывать хлорохин. Стыковка мембранного белка с хлорохином не произошла.

Рисунок 11. Результаты молекулярной стыковки структурных белков вируса и хлорохина (красный). A. Результаты молекулярной стыковки гликопротеина E2 и порфирина. B. Результаты молекулярной стыковки белка оболочки и порфирина. C. Результаты молекулярной стыковки нуклеокапсидного фосфопротеина и порфирина. 1. Структурные белки вируса. 2. Вид участков связывания.

Принципиальная схема связывания хлорохина с белком orf1ab показана на рисунке 12.A-1. Участок связывания белка orf1ab представлен на рисунке 12.A-2. Энергия связывания хлорохина и белка orf1ab составляет 4 584 302,64 ккал/моль, что в 8 раз больше энергии связывания между orf1ab и порфирином. Согласно результатам на рисунке 7.A-2, было показано, что некоторые аминокислоты, такие как MET 7045, PHE 7043, LYS 6836 белка orf1ab, могут быть связаны не только с фосфатом хлорохина, но и с порфирином.

Принципиальная схема связывания хлорохина с белком ORF8 показана на рисунке 12.B-1. На рисунке 12.B-2 показан участок связывания ORF8. Энергия связывания хлорохина с белком ORF8 составляет 4 707 657,39 ккал/моль, что эквивалентно лишь 37 % энергии связывания белка ORF8 с порфирином. Согласно результату, показанному на рисунке 7.B-2, аминокислоты, такие как ILE A: 74, ASP A:75, LYS A: 53 ORF8, могут связываться не только с фосфатом хлорохина, но и с порфирином.

Принципиальная схема связывания хлорохина с белком ORF7a показана на рисунке 12.C-1. На рисунке 12.C-2 представлен вид участка связывания. Энергия связывания хлорохина с белком ORF7a составляет 497 154,45 ккал/моль, что в 13 раз превышает энергию связи белка ORF7a с порфирином. Согласно результатам, показанным на рисунке 7. C-2, аминокислоты, такие как GLN A:94, ARG A:78 и LEU A:96 белка ORF7 могут связываться не только с фосфатом хлорохина, но и с порфирином.

Стыковка белков ORF3a, ORF6 и ORF10 с хлорохином не удалась.

Эти результаты показали, что хлорохин может в определенной степени ингибировать связывание E2 и ORF8 с порфирином с образованием комплекса. Кроме того, хлорохин может предотвратить атаку orf1ab, ORF3a и ORF10 на гем с образованием порфирина.

Рисунок 12. Результаты молекулярной стыковки вирусных неструктурных белков и хлорохина (красная структура). A. Результаты молекулярной стыковки белка orf1ab и хлорохина. B. Результаты молекулярной стыковки белка ORF8 и хлорохина. C. Результаты молекулярной стыковки белка ORF7a и хлорохина. 1. Неструктурные белки вируса. 2. Вид участков связывания.

3.5. Валидация эффекта фавипиравира

Рисунок 11.С-1 представляет собой схему связывания хлорохина с фосфопротеином нуклеокапсида. Энергия связывания хлорохина с нуклеокапсидным фосфопротеином составляет 198 815,22 ккал/моль, что эквивалентно лишь 1,4 % энергии связывания нуклеокапсидного фосфопротеина и порфирина. ALA A:50 и т. д. нуклеокапсида фосфопротеина участвуют в связывании (рисунок 12.C-2). Рисунки 4.C-2 и 11.C-2 свидетельствуют о том, что аминокислоты нуклеокапсидного фосфопротеина могут связывать порфирин, но не могут связывать хлорохин. Стыковка мембранного белка с хлорохином не произошла.

Таблица 1. Эффект фавипиравира








Белок вируса Порфирин
(ккал/моль)
Фавипиравир
(ккал/моль)
Имеет
идентичные
остатки
Мишень Отношение
связывания
с мишенью
(фавипиравир/
порфирин)
Гликопротеин E2 7,530,186,265.80
Белок оболочки 219,317. 76 597,814,480.55 Да Да 2,725.79
Нуклеокапсид 15,532,506.53
orf1ab 561,571.10 1,052,489.88 Да Да 1.87
ORF8 12,804,859.25 348,589.80 Да
ORF7a 37,123.79 17,034,560.60 Да Да 458.86
4. Обсуждение
4.1. Новый коронавирус произошел от древнего вируса

Для самых примитивных форм жизни, коими являются вирусы, не так-то просто увидеть их роль в связывании порфирина. Соединения порфирина широко распространены в фотосинтезирующих и нефотосинтезирующих организмах и связаны с критическими физиологическими процессами, такими как катализ, перенос кислорода и энергии. Порфирин также является древним соединением, широко распространенным на Земле. Порфирин впервые обнаружен в сырой нефти и асфальтовой породе в 1934 году. Порфирин обладает уникальными фотоэлектронными свойствами, отличной термостабильностью и имеет широкие перспективы применения в химии материалов, медицине, биохимии и аналитической химии. Его характеристики отлично подходят для применений, связанных с двухфотонным поглощением, флуоресценцией, передачей энергии и других. Перенос энергии флуоресцентного резонанса (FRET) — это безызлучательный процесс, при котором донор в возбужденном состоянии передает энергию реципиенту в основном состоянии посредством дипольного эффекта дальнего действия. FRET-характеристики порфирина могут быть основой способа выживания, на который опирался исходный вирус.

Существует множество теорий о происхождении вирусов, одна из которых называется теорией совместной эволюции, в которой вирусы могут эволюционировать из комплексов белка и нуклеиновой кислоты. Различные методы не объясняют, как вирус выжил независимо от не существовавших в начале жизни клеток, поэтому происхождение вирусов остается загадкой. В этой статье предполагается, что вирус может связываться с порфирином, что может объяснить проблему выживания оригинального вируса. Поскольку порфирин обладает характеристикой передачи энергии флуоресцентного резонанса, вирусы, которые связываются с порфиринами, могут получить энергию с помощью этого светоиндуцированного метода. Вирус, получивший энергию, может использовать ее для минимального перемещения, для выхода из состояния гибернации или перехода в него из активного состояния. Согласно результатам нашего исследования, новый коронавирус был формой жизни, зависящей от порфирина. Поэтому мы можем предположить, что новый коронавирус происходит от древнего вируса, который мог развиваться у летучих мышей на протяжении бесчисленных поколений.

4.2. Более высокая проницаемость порфиринов сквозь клеточные мембраны обуславливает большую инфекционность

Быстрая эволюция нового коронавируса также сопровождается некоторыми парадоксальными особенностями. Нынешняя теория предполагает, что новый коронавирус связывается с рецептором ACE2 человека через белок-шип. Он попадает в клетки человека по механизму фагоцитоза. Модели инфекционных заболеваний показали, что новая коронавирусная пневмония очень контагиозна. Следовательно, способность связывания белка-шипа и белка ACE2 человека должна быть большой, но в литературе имеются сообщения о том, что эта способность связывания является слабой. Что вызывает высокую инфекционность нового коронавируса? Мы считаем, что в дополнение к методу инвазии через взаимодействие шип-ACE2 вирус должен обладать оригинальным механизмом инвазии.

Медицинские работники обнаружили новый коронавирус в моче, слюне, кале и крови. Жизнеспособный вирус также может обнаруживаться в биологических жидкостях. В таких средах порфирин является доминирующим веществом. Порфириновые соединения относятся к классу азотсодержащих полимеров, и существующие исследования показали, что они обладают выраженной способностью обнаруживать клеточные мембраны и проникать сквозь них. В начале жизни молекулы вирусов с порфиринами непосредственно перемещались в исходную мембранную структуру за счет проницаемости порфирина. Это исследование показало, что гликопротеин E2 и белок оболочки нового коронавируса могут хорошо связываться с порфиринами. Поэтому коронавирус в связи с порфирином может также напрямую проникать через клеточную мембрану человека, что делает процесс инфицирования надежным. Наш валидационный анализ показал, что фавипиравир может предотвратить связывание только белка оболочки и порфирина. В то же время хлорохин может предотвращать связывание гликопротеина Е2 с порфирином лишь в определенной степени. Следовательно, инфекционность новой коронавирусной пневмонии не предотвращается этими препаратами полностью, так как связывание гликопротеина E2 и порфирина ингибируется не полностью.

4.3. Сложность индивидуального иммунитета

В некоторых теориях предполагается, что иммунный ответ возникает в организме после того, как у пациента разовьется заболевание. У некоторых пациентов после выздоровления вырабатываются иммунные антитела. Согласно нашему исследованию, гликопротеин E2, белок оболочки, нуклеокапсидный фосфопротеин, orf1ab, ORF7a и ORF8 вируса могут связываться с порфирином. Но из текущего исследования неясно, какие иммунные антитела возникали против вирусных белков.

Кроме того, некоторые пациенты могут погибнуть в результате цитокинового шторма. По сравнению с пациентами с атипичной пневмонией, анатомические характеристики умерших отличаются. Комплекс вирусных белков и порфирина может быть малорастворимым. Избыток слизи в тканях умерших пациентов был причиной избытка муцинового белка. Муцин может превратить слабо соединенные клетки в плотно соединенные и увеличить смазку между ними. Можно предположить, что действующее соединение приводит к уменьшению связи между клетками, в результате чего клетки начинают нуждаться в муцине для укрепления связи между собой в пределах тканей и для обеспечения смазывающего эффекта. Кроме того, когда пациент вступает в тяжелый инфекционный период, вирусные структурные белки, в основном, используются для сборки вирусов. Поэтому мы не можем обнаружить заметных вирусных включений в клетках тканей при аутопсии умерших пациентов.

4.4. Иммунные клетки заражаются и секретируют антитела и вирусные белки

Иммунные клетки, такие как плазматические клетки, также известны как эффекторные В-клетки. Плазматические клетки в основном наблюдаются в соединительной ткани слизистой оболочки как в пищеварительном тракте, так и в дыхательных путях. Это клетки, секретирующие антитела. Плазматические клетки выполняют функцию синтеза и хранения антител, а именно иммуноглобулинов, и участвуют в гуморальных иммунных ответах. В зависимости от источника выработки антител выделяют естественные антитела, такие как антитела анти-А и анти-В в системе групп крови ABO. По способности к участию в процессе агглютинации в ходе антигенной реакции антитела делят на полные антитела IgM и неполные антитела IgG. Обнаружение IgM и IgG в крови помогает определить, является ли организм человека инфицированным вирусом. В крови пациентов с подозрением на новую коронавирусную пневмонию содержится большое количество IgM. При лечении количество IgM у пациента снижается, а количество IgG повышается, указывая на то, что его организм вырабатывает резистентность и иммунитет. Имеются сообщения о том, что плазматические клетки также имеют рецептор ACE2, то есть для них существует путь инфекции шип-ACE2. Учитывая сообщения о том, что селезенка, костный мозг и лимфатические узлы тяжелых пациентов также сильно повреждены, мы предполагаем, что плазматические клетки также тесно связаны с инфекцией и выздоровлением пациентов с коронавирусом.

Плазматические клетки могут секретировать различные антитела, что также объясняет высвобождение вирусных белков в организме. Вирусные белки orf1ab, ORF3a и ORF10 синтезировались в клетках и атаковали гемоглобин и гем вне клеток. Вирусные белки могли покидать клетки через механизмы секреции белков. К числу секретируемых белков в основном относятся пищеварительные ферменты, антитела и некоторые гормоны. Исходя из вышеизложенной точки зрения, что инфицирование было связано с плазматическими клетками, мы полагали, что вирусные белки секретировались главным образом изнутри клетки наружу по механизму секреции антител. Один из возможных путей заключается в том, что после инфицирования плазматической клетки в ней запускаются процессы вирусной транскрипции и трансляции, а затем из клетки секретируются вирусные белки, такие как orf1ab, ORF3a и ORF10. Однако неясно, секретируются ли вирусные белки за пределы клетки путем связывания с антителами группы крови.

Мы планировали смоделировать этот механизм, но объем вычислений оказался слишком велик. После того, как мы ввели «антитела крови» в поисковую строку базы данных PDB, веб-страница показала почти 160 000 записей и почти 47 000 записей, связанных с человеком. Кроме того, моделирование молекулярной стыковки антител и белков, таких как orf1ab, представляет собой стыковку белков, процесс расчета которой является очень сложным. Поэтому мы не можем смоделировать этот механизм. Мы предлагаем другим лабораториям использовать суперкомпьютеры для моделирования этого механизма.

4.5. Вирусный белок атакует гемоглобин, высвобожденный за счет иммунного гемолиза эритроцитов

Эритроциты в основном содержат гемоглобин. Во время гемолиза гемоглобин выходит из клеток и растворяется в плазме. В этот момент способность гемоглобина переносить кислород теряется. Гемолиз происходит из-за разрыва мембран эритроцитов и растворения матрикса. Либо может происходить расширение пор мембраны эритроцита до степени, позволяющей гемоглобину покидать клетку, оставляя за собой двояковогнутую дискообразную клеточную мембрану — «гематоцит». Иммунный гемолиз — это специфический гемолиз, вызванный реакцией «антиген-антитело». Неспецифический гемолиз вызывается физическими, химическими или биологическими факторами. После гемолиза эритроцитов вирусные белки могут атаковать гемоглобин. Учитывая, что некоторые исследователи подсчитали, что люди с кровью типа O хуже заражаются COVID-19, мы предполагаем, что иммунный гемолиз может быть основным методом обеспечения атаки гемоглобина вирусными белками. Вирусные белки атакуют гемоглобин после заражения. Из-за ограниченных возможностей вычислительных инструментов мы не можем смоделировать, атакуют ли вирусные белки гемоглобин снаружи или внутри эритроцитов.

4.6. Более высокий уровень гемоглобина вызывает более высокую болезненность

Показано, что терапевтический эффект хлорохина фосфата в отношении новой коронавирусной пневмонии может быть тесно связан с аномальным метаболизмом гемоглобина у человека. Количество гемоглобина является основным биохимическим показателем крови, и его содержание различается в зависимости от пола. В норме у мужчин его уровень значимо выше, чем у женщин, что также может быть причиной того, почему мужчины заражаются новой коронавирусной пневмонией чаще, чем женщины. Кроме того, большинство пациентов с новой коронавирусной пневмонией составляют людей среднего и старшего возраста. Многие из этих пациентов имеют сопутствующие заболевания, такие как сахарный диабет. Пациенты с диабетом имеют более высокий уровень гликированного гемоглобина. Гликированный гемоглобин представляет собой дезоксигемоглобин. Гликированный гемоглобин представляет собой комбинацию гемоглобина и глюкозы крови, что является еще одной причиной высокого уровня инфицирования среди пожилых людей.

Это исследование подтвердило, что белки orf1ab, ORF3a и ORF10 могут скоординированно атаковать гем на бета-цепи гемоглобина. Атаке подвергаются как оксигенированный, так и дезоксигенированный гемоглобин. Во время атаки позиции orf1ab, ORF3 и ORF10 немного отличаются. Было показано, что, чем выше содержание гемоглобина, тем выше риск заболевания. Однако нет уверенности в том, что частота заболеваний, вызванных аномальным гемоглобином (структурным), относительно невелика. Гемоглобин пациентов и выздоравливающих должен быть объектом дальнейших исследований и лечения.

4.7. Ингибирование анаболического пути гема и развитие заболевания

В данной статье рассматривалось непосредственное вмешательство вируса в сборку гемоглобина человека. Основной причиной был слишком низкий уровень нормального гема. Гем участвует в критических биологических процессах, таких как регуляция экспрессии генов и трансляции белка. Порфирин является важным материалом для синтеза гема. Поскольку существующие данные показывают, что в организме оказывается слишком много свободного железа, это должно быть следствием того, что вирус-продуцирующая молекула конкурирует с железом за порфирин. Ингибирование анаболического пути гема и возникновение симптомов у человека.

Неясно, является ли пространственная молекулярная структура гема и порфирина у пациентов с порфирией такой же, как и у здоровых людей. При наличии аномальной структуры неясно, может ли такой порфирин связываться с вирусным белком с образованием комплекса, и может ли вирусный белок атаковать подобный гем. Эти вопросы должны быть рассмотрены в клинических и экспериментальных исследованиях.

5. Выводы

С момента возникновения эпидемии использование методов биоинформатики имеет большое научное значение для анализа ролей белков нового коронавируса (таких, как ORF8 и поверхностные гликопротеины). В этом исследовании методы прогнозирования доменов применялись для поиска консервативных доменов. Структуру белковых молекул, таких как ORF8 и поверхностных гликопротеинов, получали с помощью методов гомологического моделирования. Технология молекулярной стыковки использовалась для анализа взаимодействия связывающей части вирусных белков с гемом и порфирином. Результаты исследования показывают, что ORF8 и поверхностные гликопротеины могут объединяться с порфирином с образованием комплекса. В то же время белки orf1ab, ORF10 и ORF3a могут координированно атаковать гем, находящийся на 1-бета-цепи гемоглобина, что приводит к отщеплению железа с образованием порфирина. В результате такой атаки количество гемоглобина, который может переносить кислород и углекислый газ, уменьшается. Клетки легких испытывают чрезвычайно сильное воспаление из-за невозможности обеспечения интенсивного обмена углекислым газом и кислородом; в конечном итоге изображения ткани легких принимают вид матового стекла. Состояние пациентов с респираторными расстройствами ухудшится. Пациенты с диабетом и пожилые люди имеют более высокий уровень гликированного гемоглобина. Уровень гликированного гемоглобина снижается в результате вирусной атаки, что делает уровень глюкозы в крови пациентов нестабильным. Поскольку порфириновые комплексы вируса, продуцируемого в организме человека, ингибировали анаболический путь гема, они вызывали широкий спектр инфекций и заболеваний.

С учетом этих выводов дальнейший анализ показал, что хлорохин может предотвратить атаку orf1ab, ORF3a и ORF10 на гем с образованием порфирина и в определенной степени ингибировать связывание ORF8 и поверхностных гликопротеинов с порфиринами, эффективно облегчая симптомы респираторного дистресса. Поскольку способность хлорохина ингибировать структурные белки не слишком велика, терапевтический эффект для разных людей может быть различным. Фавипиравир может ингибировать связывание белка оболочки и белка ORF7a с порфирином, предотвращать проникновение вируса в клетки-хозяева и может связывать свободный порфирин. В связи с побочными действиями таких препаратов, как хлорохин, и возможностью аллергических реакций на них обращайтесь к квалифицированному врачу для получения подробной информации о лечении и не принимайте препарат самостоятельно.

На основании компьютерного моделирования и дискуссионного анализа этого исследования мы выдвинули предположение об основном механизме патогенности этого вируса. Вирус может сначала инфицировать клетки с рецепторами ACE2, включая иммунные клетки. Иммунные клетки производят антитела и вирусные белки. Антитела действуют на эритроциты, вызывая иммунный гемолиз. Гемоглобин высвобождается и подвергается атаке. Вирус захватывает порфирин и ингибирует метаболизм гема. Поэтому мы считаем, что поражение организма человека вирусом носит системный характер, а не ограничивается дыхательной системой.

Данная работа предназначена только для научного обсуждения, правильность выводов должна быть подтверждена другими лабораториями. Мы с нетерпением ожидаем сообщений от лабораторий, которые смогут доказать, является ли эта теория неправильной или правильной из следующих экспериментов: 1) используйте рентгеноструктурный анализ для определения структуры гемоглобина у тяжелобольных пациентов, чтобы выяснить, есть ли какие-либо отклонения; 2) в эксперименте с вирусами должны быть показаны следующие этапы: вирусные белки могут связывать порфирин; вирусные белки могут атаковать гем; вирусные белки могут атаковать гемоглобин в крови.

Заявления/h5>
Согласие этического комитета и согласие на участие


Согласие на публикацию


Доступность данных и материалов


Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Финансирование

Эта работа финансировалась за счет гранта Фонда естественных наук для проекта по внедрению талантов Сычуанского университета науки и техники (номер награды 2018RCL20, грантополучатель WZL).

Вклад авторов

Финансирование получил WZL. Дизайн, анализ, написание: WZL. Курирование данных, проверка рукописи: HLL. Все авторы прочитали и согласились с опубликованной версией рукописи.

Благодарности


Об авторах

1 Факультет информатики и инженерии, Сычуаньский инженерно-технический университет, Цзыгун, 643002, Китай;
2 Факультет медико-биологических наук и технологии пищевых продуктов, Ибиньский университет, Ибинь, 644000, Китай.


 

Список литературы
  1. Дяо, K., Хань, P., Пан, T., Ли, И. и Ян, Ц. Характерные особенности визуализации HRCT в репрезентативных случаях завозной инфекции новой коронавирусной пневмонии 2019 г. (Diao, K., Han, P., Pang, T., Li, Y. & Yang, Z. HRCT Imaging Features in Representative Imported Cases of 2019 Novel Coronavirus Pneumonia). Precision Clinical Medicine (2020).
  2. Чан, Д. и др., Эпидемиологические и клинические характеристики новой коронавирусной инфекции на примере 13 пациентов за пределами Уханя. Китай (Chang, D. et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China). JAMA (2020).
  3. Хуан С. и др. Клинические характеристики пациентов, инфицированных новым коронавирусом 2019 в Ухане, Китай (Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China). The Lancet (2020).
  4. Ли, С., Цай, Цз., Ван, С. и Ли, Ю. Возможность крупномасштабного переноса инфекции 2019 nCov от человека к человеку в первом поколении (Li, X., Zai, J., Wang, X. & Li, Y. Potential of large ‘first generation’human‐to‐human transmission of2019‐nCoV). Journal of Medical Virology (2020).
  5. Ван, Д. и др., Клинические характеристики 138 госпитализированных пациентов с вирусной пневмонией, вызванной новым коронавирусом 2019, Ухань, Китай (Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China). Jama (2020).
  6. Ли, Ц. и др. Ранняя динамика передачи пневмонии, вызванной новой коронавирусной инфекцией, в Ухане, Китай (Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia). New England Journal of Medicine (2020).
  7. Чжу, Н. и др. Новый коронавирус, выделенный у пациентов с пневмонией в Китае в 2019 г. (Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019). New England Journal of Medicine (2020).
  8. Ву, Ф. и др. Новый коронавирус, ассоциируемый с респираторными заболеваниями людей в Китае (Wu, F. et al. A novel coronavirus associated with human respiratory disease in China). Nature, 1-8 (2020).
  9. Лу, Х., Страттон, С. У. и Тан, И. В. Вспышка пневмонии неизвестной этиологии в Ухане, Китай: загадка и чудо (Lu, H., Stratton, C. W. & Tang, Y. W. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle). Journal of Medical Virology.
  10. Чу, Н. и др. Исследовательская группа по новому китайскому коронавирусу. Новый коронавирус, выделенный у пациентов с пневмонией в Китае (Zhu, N. et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019). N Engl J Med (2020).
  11. Лу, Р. и др. Геномная характеристика и эпидемиология нового коронавируса 2019: заключения по поводу происхождения вируса и связывания его с рецепторами (Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding). The Lancet (2020).
  12. Ван, М. и др. Прецизионно-медицинский подход в отношении лечения коронавирусной уханьской пневмонии (Wang, M. et al. A precision medicine approach to managing Wuhan Coronavirus pneumonia). Precision Clinical Medicine (2020).
  13. Шехер, С. Р., Пекош, А. в сборнике «Молекулярная биология коронавируса SARS» (Schaecher, S. R. & Pekosz, A. in Molecular Biology of the SARS-Coronavirus) 153-166 (Springer, 2010).
  14. МакБрайд, Р. и Филдинг, Б. Ч. Роль вспомогательных белков вируса тяжелого острого респираторного синдрома (ТОРС) в патогенезе вируса (McBride, R. & Fielding, B. C. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis). Viruses 4, 2902-2923 (2012).
  15. Ву, А. и др. Состав и дивергенция генома нового коронавируса (2019-nCoV) родом из Китая (Wu, A. et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China). Cell Host & Microbe (2020).
  16. Параскевис, Д. и др. Полногеномный эволюционный анализ нового коронавируса (2019-nCoV) позволяет отклонить гипотезу о его появлении в результате недавнего события рекомбинации (Paraskevis, D. et al. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event). Infection, Genetics and Evolution, 104212 (2020).
  17. Ли, С. и др. Регуляция отклика на стресс со стороны эндоплазматического ретикулума активностью ионных каналов, образуемых белком оболочки коронавируса, вызывающего инфекционный бронхит, модуляцией выброса вирионов, влиянием на апоптоз, репликативную способность и патогенез (Li, S. et al. Regulation of the ER Stress Response by the Ion Channel Activity of the Infectious Bronchitis Coronavirus Envelope Protein Modulates Virion Release, Apoptosis, and Pathogenesis). Frontiers in Microbiology 10, 3022 (2020).
  18. То, К.-К. В. и др. Постоянное выявление нового коронавируса 2019 в слюне (To, K. K.-W. et al. Consistent detection of 2019 novel coronavirus in saliva). Clinical Infectious Diseases (2020).
  19. Дон, Н. и др. Анализ моделей генома и белковой структуры отображает происхождение и патогенность вируса 2019-nCoV, нового коронавируса, вызвавшего вспышку пневмонии в Ухане, Китай (Dong, N. Et al Genomic and protein structure modelling analysis depicts the origin and pathogenicity of 2019-nCoV, a novel coronavirus which caused a pneumonia outbreak in Wuhan, China). F1000Research 9, 121 (2020).
  20. Роте, К. и др. Передача инфекции 2019-nCoV при контакте с бессимптомным носителем в Германии (Rothe, C. et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany). New England Journal of Medicine (2020).
  21. Чен, Н. и др., Эпидемиологические и клинические характеристики 99 случаев пневмонии, вызванной новым коронавирусом 2019 года в Ухане, Китай: дескриптивное исследование (Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study). The Lancet (2020).
  22. Дас, Р. и Шарма, П., в сборнике «Клиническая молекулярная медицина» (Das, R. & Sharma, P. in Clinical Molecular Medicine) 327-339 (Elsevier, 2020).
  23. Казазян-мл., Х. Х. и Вудхэд, А. П. Синтез гемоглобина А в развивающемся плоде (Kazazian Jr, H. H. & Woodhead, A. P. Hemoglobin A synthesis in the developing fetus). New England Journal of Medicine 289, 58-62 (1973).
  24. Лю, Дж. и др. Общие и отличающиеся аспекты патологии и патогенеза новых патогенных для человека коронавирусных инфекций SARS‐CoV, MERS‐CoV и 2019‐nCoV. (Liu, J. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV). Journal of Medical Virology (2020).
  25. Ван, М. и др. Ремдесивир и хлорохин эффективно ингибируют недавно появившийся коронавирус (2019-n-CoV) in vitro (Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro). Cell Research, 1-3 (2020).
  26. Бернардо-Сейсдедос, Г., Джил, Д., Блуэн, Ж-М., Ришар, Э. и Милле, О. Заболевания белкового гомеостаза (Bernardo-Seisdedos, G., Gil, D., Blouin, J.-M., Richard, E. & Millet, O. in Protein Homeostasis Diseases) 389-413 (Elsevier, 2020).
  27. Ламеда, И. Л. и Кох, Т. Р в сборнике «Заболевания печени» (Lameda, I. L. P. & Koch, T. R. in Liver Diseases) 107-116 (Springer, 2020).
  28. Бэйли, Т. Л., Джонсон, Дж., Грант, К. Э., Нобл, У. С. Программа МЕМЕ SUITE (Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite). Nucleic acids research 43, W39-W49 (2015).
  29. Бэйли, Т. Л. и др. ПРОГРАММА МЕМЕ SUITE: средство поиска известных мотивов и открытия новых (Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching). Nucleic acids research 37, W202-W208 (2009).
  30. Бэйли, Т. Л., Уильямс, Н., Мислех, С. и Ли, У. У. МЕМЕ: обнаружение и анализ мотивов с последовательностях ДНК и белков (Bailey, T. L., Williams, N., Misleh, C. & Li, W. W. MEME: discovering and analyzing DNA and protein sequence motifs). Nucleic acids research 34, W369-W373 (2006).
  31. Шведе, Т., Копп, Й., Гуэ, Н. и Петиш, М. SWISS-MODEL: автоматизированный сервер гомологического моделирования белков (Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server). Nucleic acids research 31, 3381-3385 (2003).
  32. Бьязини, М. и др. SWISS-MODEL: моделирование третичной и четвертичной структуры белков и использованием эволюционной информации (Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information). Nucleic acids research 42, W252-W258 (2014).
  33. Studio, D. Discovery Studio. Accelrys [2.1] (2008).

Показатели клинического анализа крови — Лаборатория KDL

Гемоглобин (Hb)– один из главных показателей общего анализа крови.  Снижение концентрации гемоглобина довольно частое явление, которое можно встретить в любом возрасте. Именно гемоглобин придает крови такой красный цвет. А необходим он нам для доставки кислорода из легких в наши органы – мозг, сердце, мышцы и другие. Поэтому, если у вас есть одышка уже при незначительной физической нагрузке, постоянная слабость, апатия — стоит обратить внимание именно на этот на показатель. В последнее время врачи рекомендуют думать о возможной анемии уже при гемоглобине ниже 120 г/л у женщин, а у мужчин ниже 130 г/л.

Эритроциты (RBC) – показатель числа эритроцитов, измеряется в количестве клеток на литр крови. Это самый многочисленный тип клеток. Главная задача эритроцитов — нести в себе гемоглобин. Если снижается количество эритроцитов, например, из-за дефицита витамина В12 или фолиевой кислоты (а именно эти витамины нужны для синтеза этих клеток), то гемоглобина в крови также будет не хватать, даже при хорошем запасе железа (ферритина).

Гематокрит (HCT) — объем всех клеток крови, % объемного содержания клеток в крови.  При повышении гематокрита за черту 50% риск тромбоза из-за сгущения крови возрастает. В гематологических анализаторах это расчетный показатель т.е. прямым образом на него влияют количество эритроцитов и их средний объем.

Средний объем эритроцитов (MCV) — MCV может быть низким (при микроцитарной анемии), нормальным (при нормоцитарной анемии) или высоким (при макроцитарной анемии). Маленькие эритроциты (микроцитоз) – является распространенным лабораторным нарушением, которое является классическим признаком дефицита железа или талассемии. По мере прогрессирования анемии новые эритроциты становятся все меньше и меньше, поэтому показатель MCV может служить маркером давности анемии. При ранней железодефицитной анемии MCV может быть нормальным, поскольку измеренное MCV отражает объем клеток, продуцированных за предшествующие 120 дней (срок жизни эритроцитов). Для диагностики скрытого дефицита железа врач может назначить вам анализ на ферритин. Анемия возникает, так как без молекулы железа костный мозг не может построить молекулу гемоглобина.

Среднее содержание гемоглобина в эритроците (MCH) –довольно стабильная величина, которая не зависит от возраста. Этот индекс пришел на смену устаревшему цветовому показателю (ЦП). Снижение MCH также говорит о нехватке железа. Повышение может быть признаком гиперхромной анемии.

Средняя концентрация гемоглобина в эритроците (MCHC). Повышение MCHC при сниженном MCV может предполагать наследственный микросфероцитоз – заболевание при котором наблюдается повышенное разрушение эритроцитов и может быть желтушность.

Ширина распределения эритроцитов по объему (RDW) — показатель анизоцитоза (разного размера эритроцитов). До появления гематологических анализаторов гетерогенность размера эритроцитов исторически определялась качественным исследованием мазков периферической крови. RDW указывает насколько сильно эритроциты различаются по размеру. Увеличивается при дефиците железа, фолиевой кислоты или витамина В12.

Тромбоциты (PLT) — самые маленькие клетки крови, но не менее важные чем эритроциты и лейкоциты. Необходимы они нам для свертывания крови. При их снижении в анализе ниже 30  самопроизвольно появляются на коже синяки, так проявляется повышенная кровоточивость. При повышении количества тромбоцитов в первую очередь надо исключать железодефицитную анемию и воспалительную реакцию (сделать анализ на С-реактивный белок).

MPV – средний объем тромбоцитов. Значение MPV повышается в период активного производства тромбоцитов. А уменьшение объема тромбоцитов говорит о возможных проблемах с костным мозгом. На показатель MPV стоит обращать внимание только при снижении количества тромбоцитов и отсутствии агрегации.

PCT – тромбокрит, или % объема всех тромбоцитов в крови. Чем выше тромбокрит, тем больше риск тромбоза.

PDW —  ширина распределения тромбоцитов по объему. PDW также как и MPV используется для диагностики причины снижения тромбоцитов.

Лейкоциты – самый главный показатель нашей иммунной системы. Снижение числа лейкоцитов может быть связано с вирусными инфекциями, токсическим воздействием на организм, приемом некоторых лекарств. Увеличение количества лейкоцитов может говорить об воспалительной реакции, острой инфекции, лейкозе.  В этом случае особое внимание нужно обратить на лейкоцитарную формулу, то есть сделать клинический анализ крови с лейкоформулой.

Поделиться статьей:

Остались вопросы?

Болезни крови умеют ловко прятаться под любыми масками

В редакции «Орловской правды» состоялась прямая линия с главным внештатным гематологом Орловской области, врачом высшей категории, врачом-гематологом взрослой поликлиники № 2 Советского района г. Орла Мариной Николаевной Козьминой.


— У меня всегда был пониженный гемоглобин — не выше 100 единиц, но чувствую себя нормально. Сейчас мне 46 лет. Обязательно ли пить препараты железа?



Наталья Максимова, г. Орёл


— Результат анализа говорит о том, что у вас анемия. Но главное — точно определить её причину. Надо сдать анализ крови на сывороточное железо, чтобы узнать, связана ваша анемия с дефицитом железа или есть другие причины.


— А какие ещё могут быть причины?


— Их очень много. Например, нехватка витамина В12, нехватка фолиевой кислоты, различные заболевания крови, в том числе онкологические.


 


— У меня часто появляется герпес на губах. Может быть, это связано с заболеваниями крови? Мне 26 лет.



Алевтина, г. Орёл


— Частое появление герпеса прежде всего связано с иммунитетом. Вам надо обязательно проконсультироваться с врачом-иммунологом. Сделать это можно, например, в областном центре СПИД.


 


— Анализ крови показал, что СОЭ у меня 58 единиц. Может ли повышенное СОЭ быть связано с заболеванием крови?



Елена, г. Орёл


— Да, может. Показатель СОЭ у вас действительно повышенный, поэтому надо обязательно обратиться к гематологу. Он назначит анализ на исследование белков крови и мочи. В зависимости от результатов врач определит дальнейшую тактику.


 


— Уже 30 лет я не ем мяса, но не отказываюсь от рыбы, молока, творога, яиц. Это может отрицательно повлиять на состояние крови?



Николай Бузов, г. Орёл


— Нет, мужчинам, даже при отказе от мяса, это практически не грозит, так как у вас нет ежемесячных повышенных расходов железа, как у женщин. Тем более вы едите рыбу, яйца, овощи, из которых ваш организм получает железо. Так что анемия у вас, скорее всего, не разовьётся, но 100-процентной гарантии вам никто не даст.


 


— Пью кардиомагнил уже в течение года. Сколько его можно принимать и есть ли в этом смысл? Мне 66 лет.



Александр Сергеевич, г. Орёл


— Этот вопрос не совсем к гематологу, но как доктор скажу, что при сердечно-сосудистых патологиях действительно очень часто рекомендуют кардиомагнил. Назначают его кардиологи или терапевты, и принимают этот препарат обычно пожизненно. Но в этом случае советую вам следить за состоянием желудка, так как для него приём препаратов с ацетилсалициловой кислотой небезразличен.


 


— У меня пониженные тромбоциты в крови. С чем это может быть связано?



Дарья Павленко, Орловский район


— Причин может быть много: вирусные гепатиты, поражения щитовидной железы, ревматологические заболевания. Кроме того, снижение уровня тромбоцитов может быть связано с приёмом некоторых медикаментов.


 


— У моего отца гемофилия. Значит, я тоже в группе риска?



Олег Яковлев, г. Орёл


— Нет, сыновья больного гемофилией это заболевание не унаследуют. Но все его дочери — это носители больного гена. И вот сыновья дочерей, то есть внуки гемофилика, уже в зоне риска.


 


— В каких продуктах больше всего железа?



Инна Архипова, г. Орёл


— В говядине, печени, морепродуктах, рыбе, гречневой крупе, грецких орехах, гранатах, яблоках.


 


— У матери группа крови I положительная, а у отца II отрицательная. Ребёнок перенял II группу от отца. Она обязательно должна быть отрицательной?



Светлана, г. Орёл


— Нет. Резус-фактор может быть унаследован от любого родителя. В вашем случае он может быть и положительным, и отрицательным.


— Говорят, что после 50 лет всем надо пить лекарства для разжижения кро­ви…



Ирина Ерёмина, г. Орёл


— Чтобы знать точно, насколько необходимы вам такие препараты, надо сдать общий анализ крови с подсчётом тромбоцитов. Нормальный уровень тромбоцитов в крови 180-400 единиц.


 


— Мне 41 год. Я иногда сдаю кровь как донор. Скажите: как часто можно сдавать кровь без ущерба для здоровья?



Ольга Михайлова, г. Орёл


— Женщинам после 40 лет я бы вообще не советовала сдавать кровь. Дело в том, что в этом возрасте у женщин часто появляется проблема с железодефицитной анемией, а вы ещё добавляете себе потерю крови. Но к мужчинам эти рекомендации не относятся, так как они менее склонны к анемиям.


 


— Последний анализ показал, что у меня гемоглобин 145 единиц. А норма до 140. Что делать?



Татьяна, г. Орёл


— Ничего предпринимать не надо. 145 — это нормальный гемоглобин и для женщин, и для мужчин.


 


— Если меня кто-то сильно схватит за руку, то обязательно на этом месте остаётся синяк. Может это быть связано с кровью?



Светлана, Орловский район


— Да. Такой симптом бывает при очень высоком или очень низком уровне тромбоцитов. В этом случае надо начать с общего анализа крови.


 


— У меня почти всегда повышено СОЭ до 30 единиц. И это независимо от того, болею я или нет. Может быть, повышение связано с моим возрастом? Мне 80 лет.



Галина Ивановна, г. Орёл


— Нет, СОЭ не ассоциируется с возрастом. Если СОЭ у вас стабильно повышенное, это может быть признаком многих заболеваний: воспалительных, онкологических, заболеваний крови. Но обычно болезни крови характеризует более высокий уровень СОЭ, поэтому следите за своими показателями и сопоставляйте их со своим самочувствием.


 


— У меня в крови обнаружен повышенный уровень тромбоцитов. Что это значит?



Галина Леонидовна, г. Ливны


— Если тромбоциты постоянно повышены, то, скорее всего, это гематологическое заболевание, которое называется эссенциальная тромбоцитемия. Если же уровень тромбоцитов в крови повышается периодически, то необходимо провести обследование на наличие инфекции или онкологии.


 


— Какие симптомы могут быть при заболеваниях крови и должны насторожить человека?



Мария, Орловский район


— Как сказал учёный-гематолог академик Андрей Иванович Воробьёв, не существует такой клинической маски, которую бы не мог иметь лейкоз (злокачественное заболевание кроветворной системы. — Прим. авт.). То есть симптомы могут быть самыми разными. Классическими считаются: слабость, утомляемость, повышение температуры тела.


Насторожить человека должны появляющиеся вроде ниоткуда синяки на теле, частые носовые кровотечения. Кровоточивость дёсен тоже может быть симптомом заболеваний крови. Некоторые виды лейкоза начинаются с поражения дёсен.


 


— В Интернете прочитала, что существует правильное питание в зависимости от группы крови. К примеру, при I группе советуют есть много мяса, при II — рыбу… Как вы к этому относитесь?



Алевтина, Орловский район


— Я считаю, что серьёзно к этим советам относиться нельзя. Питание должно быть по возможности здоровым независимо от группы крови.

Как повысить гемоглобин и бороться с железодефицитной анемией?

Как повысить гемоглобин и бороться с железодефицитной анемией?

13.05.2019 14:58

Уровень гемоглобина в крови является одним из значимых показателей состояния нашего здоровья. Гемоглобин — это сложный белок, который входит в состав эритроцитов (красных кровяных телец), и отвечает за «доставку» кислорода к нашим органам и тканям.

Люди с пониженным гемоглобином могут чувствовать вялость, слабость, быструю утомляемость, головокружение, характерны также бледность и сухость кожи, т. е. организм попросту не обеспечивается в достаточной мере кислородом. Уровень гемоглобина можно определить, сдав анализ крови. Для женщин нормой является 120 г/л, для мужчин — 130 г/л и выше, для детей первого года жизни и беременных женщин — 110 г/л.

В строительстве гемоглобина участвует, наряду с другими, один очень важный микроэлемент — железо. Именно железодефицитная анемия (малокровие) — наиболее распространённый тип этого заболевания.

Любую болезнь легче предупредить, чем лечить. В основу профилактики анемии заложены, в первую очередь, принципы правильного питания. Ежедневный пищевой рацион человека должен содержать не менее 20 мг железа, а для беременных женщин эта цифра должна составлять 30 мг. Надо отметить, что женщины каждый месяц теряют в 2 раза больше железа, чем мужчины, и им особенно надо помнить о восполнении этого элемента.

В списке продуктов, содержащих железо, на первом месте стоит, несомненно, мясо, а именно телятина. Из неё всасывается 22% железа. Немного меньше этот показатель у говядины и свинины. Из рыбы усваивается 11%. Богата железом и печень.

Раньше больным малокровием рекомендовалось вводить в рацион больше яблок, моркови, граната. Но дело в том, что трёхвалентное железо, входящее в состав овощей и фруктов, практически не усваивается. А вот витамин C, которым богата растительная пища, может существенно усилить всасывание железа, содержащееся в мясных блюдах. Поэтому свежие овощи нужно употреблять только в сочетании с мясными блюдами. Полезно также после приёма пищи, богатой железом, выпивать стакан апельсинового сока, при этом количество усвоенного железа может увеличиться вдвое. Улучшает усвоение железа и фруктоза, которая в достаточном количестве содержится в мёде. Лучше всего использовать тёмные сорта меда, т.к. они более богаты полезными микроэлементами.

Значимые дозы железа и меди (которая, кстати, также необходима для нормального процесса кроветворения) присутствуют в зерновых, бобовых и в крупах. Но следует помнить, что эти продукты содержат ещё и фитаты — фосфорные соединения, препятствующие усвоению железа (хотя у них есть и другое, полезное свойство — связывать и выводить шлаки из организма). Снизить их дозу можно, например, при помощи размалывания, замачивания или проращивания. Так, заливая крупу на два часа водой, вы можете значительно снизить их количество.

А теперь внимание тем, кто любит почаёвничать или отведать ароматного кофе. Чай, и чёрный и зелёный, наряду с кофе содержат большое количество танинов, которые, так же как и фитаты, значительно ограничивают усвоение железа. Так что этими напитками лучше не злоупотреблять. Время от времени их лучше заменять соками и компотами.

Врачи советуют людям, страдающим железодефицитной анемией, пользоваться чугунной посудой для приготовления блюд. Так, один опыт показал, что приготовление соуса в чугунной кастрюле медленным кипячением в течение 20 минут, увеличило количество железа в блюде в 9 раз!

Но не забудьте, что избыток железа в крови ещё страшнее его недостатка. Поэтому все наши рекомендации относятся к людям, железодефицит у которых установлен врачом. Правда, в отличие от лекарственных препаратов, железо, получаемое с пищей, просто перестанет усваиваться, если только человек не страдает наследственным гемохроматозом — генетическим заболеванием избыточного всасывания железа. А ещё медь и цинк, также необходимые организму, могут не всасываться из-за того, что он «занят» усвоением железа.

И, напоследок, ещё об одном занимательном эксперименте, как говорится на злобу дня. Британские учёные провели обследование 164 англичанок, увлекающихся диетами. У 25% девушек была обнаружена выраженная анемия, а тест на уровень их интеллекта в среднем был на 10 баллов ниже. После приёма железосодержащих препаратов, через какое-то время уровень IQ нормализовался. По мнению специалистов более всего подвержены снижению уровня интеллекта женщины, увлекающиеся вегетарианскими диетами. Вот так!

Ред.


Лечение железодефицитной анемии у женщин после родов

Анемия является состоянием, когда содержание гемоглобина в крови меньше нормы (низкий гемоглобин), что отражается в анализах крови. Гемоглобин это молекула в составе красных кровяных клеток, и для переноса кислорода ему требуется железо. Недостаточное потребление/поглощение железа и потеря железа (например, в результате кровотечения) могут привести к железодефицитной анемии. Симптомы анемии включают усталость/утомляемость, одышку и головокружение. Женщины могут потерять много крови во время родов, и у многих беременных женщин уже есть анемия, которая может прогрессировать в результате кровотечения. Тяжелая анемия может быть связана с материнской смертностью. Послеродовая железодефицитная анемия чаще встречается в странах с низким уровнем дохода.

Лечение железодефицитной анемии включает в себя таблетки, содержащие железо, или раствор,который вводят в вену (внутривенно). Другим вариантом лечения является восстановление красных кровяных клеток с помощью переливания крови от донора или стимулирование образования красных кровяных клеток с помощью эритропоэтина. Важно исследовать, какой метод является лучшим в уменьшении симптомов анемии, и являются ли эти варианты лечения безопасными.

Мы включили 22 рандомизированных контролируемых исследования с участием 2858 женщин и провели 13 сравнений, многие из которых были основаны только на небольшом числе исследований, включавших малое число женщин. В целом, качество доказательств было низким. Большинство клинических испытаний были проведены в странах с высоким уровнем дохода.

В 10 исследованиях, включающих 1553 женщины, сравнивали внутривенное железо с пероральным железом. Только в одном исследовании был показан временный положительный эффект в отношении усталости/утомляемости при внутривенном введении железа. О других симптомах анемии не сообщали. Одна женщина умерла от осложнений со стороны сердца в группе внутривенного введения железа. Только в двух исследованиях сообщали о материнских смертях. Аллергические реакции встречались у трех женщин, и осложнения со стороны сердца были у двух женщин в группе внутривенного введения препарата железа. Желудочно-кишечные симптомы были частыми в группе перорального приема препаратов железа (приема внутрь) и привели к отказу от лечения у некоторых участников.

в одном исследовании сравнивали переливание красных клеток крови с отсутствием переливания. Некоторые (но не все) показатели усталости/утомляемости временно улучшились в группе женщин с переливанием крови. О материнской смертности не сообщали.

При сравнении перорального железа с плацебо (три исследования) о симптомах анемии не сообщали. Остается неизвестным, перевешивает ли польза пероральных препаратов железа известный вред (неблагоприятные эффекты) со стороны желудочно-кишечного тракта.

В других исследованиях, в которых сравнивали другие варианты лечения, не изучали усталость/утомляемость.

В очень малом числе исследований сообщили об уменьшении симптомов анемии, хотя это, возможно, является самой важной целью лечения.

Существующие доказательства не позволяют нам в полной мере оценить эффективность лечения железодефицитной анемии после родов, и необходимы дальнейшие исследования.

Эритроцитарные индексы

Эритроцитарные индексы определяют размер эритроцита и содержание в нем гемоглобина и включают в себя средний объем эритроцита (MCV), среднее содержание гемоглобина в эритроците (MCHC), среднюю концентрацию гемоглобина в эритроцитах (MCHC), а также распределение эритроцитов по величине (RDW).

Определение вышеуказанных показателей является неотъемлемой частью общего анализа крови и отдельно не производится.

Синонимы русские

Средний объем эритроцита, среднее содержание гемоглобина в эритроците, средняя концентрация гемоглобина в эритроцитах, распределение эритроцитов по величине, индекс морфологии эритроцитов.

Синонимы английские

Red Cell Indicies, Red Blood Indicies, Red Blood Cell Indices, Blood indicies МСV, MCH, MCHC, Mean cell hemoglobin, Mean Cell Volume, Mean cell hemoglobin concentration, Mean corpuscular volume, Mean corpuscular hemoglobin concentration, Mean corpuscular hemoglobin, RDW, RDW-CS, RDW-SD, Red cell distribution of width.

Общая информация об исследовании

Эритроциты – это красные кровяные клетки, являющиеся основными форменными элементами крови. В их составе есть гемоглобин – белок, который переносит кислород от легких к тканям и органам. Он состоит из белка глобина и гемма-комплекса, содержащего железо, способное связываться с кислородом. У некоторых людей процесс «сборки» гемоглобина может нарушаться, что отражается на внешнем виде и размере эритроцитов.

Изменение количества эритроцитов обычно сопряжено с изменениями уровня гемоглобина. Когда количество эритроцитов и уровень гемоглобина снижены – у пациента анемия, когда они повышены – полицитемия.

Эритроцитарные индексы позволяют оценить размер эритроцитов и содержание в них гемоглобина. Они характеризуют сами клетки, а не их количество, вследствие чего являются относительно стабильными параметрами.

Средний объем эритроцита (MCV)

MCV – средний объем одного эритроцита. Он может измеряться анализатором непосредственно путем оценки многих тысяч эритроцитов или вычисляться по формуле как отношение гематокрита к количеству эритроцитов.

Этот показатель измеряется в фемтолитрах (10-15/л). Один фемтолитр равен одному кубическому микрометру (одна миллионная часть метра).

При большом количестве аномальных эритроцитов (например, при серповидно-клеточной анемии) подсчет MCV является недостоверным.

Среднее содержание гемоглобина в эритроците (MCH)

MCH отражает, сколько гемоглобина в среднем содержится в одном эритроците. Измеряется в пикограммах (одна триллионная часть грамма, 10-12) на эритроцит и рассчитывается как отношение гемоглобина к количеству эритроцитов. Он соответствует цветному показателю, который использовался ранее для отражения содержания гемоглобина в эритроцитах. Обычно MCH в эритроците является основой для дифференциальной диагностики анемий.

Средняя концентрация гемоглобина в эритроцитах (MCHC)

MCHC – показатель насыщения эритроцита гемоглобином, в отличие от MCH характеризует не количество гемоглобина в клетке, а «плотность» заполнения клетки гемоглобином. Рассчитывается как отношение общего гемоглобина к гематокриту – объему, который занимают эритроциты в кровяном русле. Он измеряется в граммах на литр и является наиболее чувствительным показателем при нарушениях образования гемоглобина. Кроме того, это один из самых стабильных гематологических показателей, так что MCHC используется как индикатор ошибок анализатора.

Распределение эритроцитов по объему (RDW)

RDW – степень разброса эритроцитов по объему. Существуют разные варианты подсчета этого показателя. RDW-CV измеряется в процентах и показывает, насколько объем эритроцитов отклоняется от среднего. RDW-SD измеряется в фемтолитрах, так же как средний объем эритроцитов (MCV), и показывает разницу между самым маленьким эритроцитом и самым большим.

В целом RDW соответствует анизоцитозу, который определяется на основании микроскопии мазка крови, однако является значительно более точным параметром.

Для чего используется исследование?

Оценка эритроцитарных индексов позволяет получить представление о характеристиках эритроцитов, что очень важно в определении вида анемии. Эритроцитарные индексы зачастую быстро реагируют на лечение анемий и могут использоваться для оценки эффективности терапии.

Когда назначается исследование?

Как правило, эритроцитарные индексы входят в рутинный общий анализ крови, который назначается как планово, так и при различных заболеваниях, перед хирургическими вмешательствами. Повторно этот анализ назначают пациентам, проходящих лечение от анемии.

Что означают результаты?

Средний объем эритроцита (MCV)
















Пол

Возраст

Референсные значения

 

Меньше 1 года

71 — 112 фл

1-5 лет

73 — 85 фл

5-10 лет

75 — 87 фл

10-12 лет

76 — 94 фл

 

 

 

 

Женский

12-15 лет

73 — 95 фл

15-18 лет

78 — 98 фл

18-45 лет

81 — 100 фл

45-65 лет

81 — 101 фл

Больше 65 лет

81 — 102 фл

 

 

 

 

Мужской

12-15 лет

77 — 94 фл

15-18 лет

79 — 95 фл

18-45 лет

80 — 99 фл

45-65 лет

81 — 101 фл

Больше 65 лет

81 — 102 фл

На основании MCV, размера эритроцитов, анемии подразделяются на следующие виды:

  • Микроцитарные – при MCV меньше нормы в крови преобладают эритроциты маленького размера. Чаще всего причиной микроцитарной анемии является дефицит железа. Он может возникать из-за длительных кровопотерь, нарушения усвоения железа, недостаточного употребления мясных продуктов, а также из-за некоторых нарушений «сборки» гемоглобина, например при талассемии или при различных хронических заболеваниях (длительных инфекциях, онкологиях).
  • Нормоцитарные – когда эритроциты нормального размера. Это бывает при угнетении работы костного мозга – при апластической анемии, недавнем кровотечении, хронических заболеваниях печени и почек.
  • Макроцитарные, когда в крови преобладают эритроциты крупного размера. Чаще всего это происходит при дефиците витамина B12 или фолиевой кислоты. MCV может повышаться и при нормальном уровне гемоглобина – из-за злоупотребления алкоголем, многолетнего курения, снижения функции щитовидной железы

Средний объём эритроцита в норме в течение жизни меняется: максимален он у новорождённых, а затем постепенно снижается.

Что может влиять на результат?

Большое количество ретикулоцитов, выраженный лейкоцитоз, а также значительное увеличение уровня глюкозы завышают показатель среднего объёма эритроцитов.

При одновременном увеличении в крови количества крупных (макроцитарных) и маленьких (микроцитарных) эритроцитов MCV будет в норме. Выявить нарушения в этом случае позволяет микроскопическое исследование мазка крови.

Среднее содержание гемоглобина в эритроците (MCH)


















Возраст

Пол

Референсные значения

 

30 — 37 пг

14 дней — 1 мес.

 

29 — 36 пг

1 — 2 мес.

 

27 — 34 пг

2 — 4 мес.

 

25 — 32 пг

4 — 6 мес.

 

24 — 30 пг

6 — 9 мес.

 

25 — 30 пг

9 — 12 мес.

 

24 — 30 пг

1 — 3 года

 

22 — 30 пг

3 — 6 лет

 

25 — 31 пг

6 — 9 лет

 

25 — 31 пг

9-15 лет

 

26 — 32 пг

15-18 лет

 

26 — 34 пг

18-45 лет

 

27 — 34 пг

45-65 лет

 

27 — 34 пг

> 65 лет

женский

27 — 35 пг

> 65 лет

мужской

27 — 34 пг

По MCH анемии делят на нормохромные (когда среднее содержание гемоглобина в эритроците в пределах референсных назначений), гипохромные (когда MCH снижено) и гиперхромные (если среднее содержание гемоглобина в эритроците повышено).

Нормохромия присуща здоровым людям, но также встречается при гемолитических, апластических анемиях, а также после недавнего кровотечения.

Гипохромия, как правило, связана с уменьшением объёма эритроцитов (микроцитозом), однако может возникать и в эритроцитах нормального объёма.

Таким образом, снижение MCH обычно происходит при микро- и нормоцитарных анемиях. Повышение же отмечается при макроцитарных анемиях и у новорождённых.

Что может влиять на результат?

Повышение уровня липидов крови и значительный лейкоцитоз, миеломная болезнь и введение гепарина завышают результаты MCH.

Средняя концентрация гемоглобина в эритроците (MCHC)







Возраст

Референсные значения

Меньше 1 года

290 — 370 г/л

1-3 года

280 — 380 г/л

3-12 лет

280 — 360 г/л

13-19 лет

330 — 340 г/л

Больше 19 лет

300 — 380 г/л

Повышение MCHC отмечается при унаследованном заболевании, когда эритроциты имеют округлую форму – наследственном сфероцитозе, а также у новорождённых.

Снижение MCHC обычно происходит при микроцитарных анемиях.

Что может влиять на результат?

Повышение уровня липидов крови, миеломная болезнь и насыщение крови гепарином ведут к ложноповышенным результатам по MCHC.

RDW-SD (распределение эритроцитов по объёму, стандартное отклонение): 37 — 54.

RDW-CV (распределение эритроцитов по объёму, коэффициент вариации):




Возраст

RDW-CV, %

14,9 — 18,7

> 6 мес.

11,6 — 14,8

Повышение RDW отмечается при значительном разбросе в размерах эритроцитов, что может быть при железодефицитных анемиях, когда увеличивается количество маленьких эритроцитов (микроцитов), или при дефиците витамина В12 или фолиевой кислоты, когда повышается число увеличенных в размере эритроцитов – мегалобластов.

Повышение RDW является одним из наиболее ранних признаков железодефицитной анемии. Уменьшение среднего объёма эритроцитов при нормальном RDW позволяет заподозрить талассемию.

Если большинство эритроцитов уменьшены или увеличены, результат RDW может оставаться в норме.

Патологические причины сниженного RDW неизвестны.

Что может влиять на результат?

Значительное повышение количества ретикулоцитов или лейкоцитов завышает результат RDW.

Важные замечания

  • Полное представление о внешнем виде и размерах эритроцитов можно получить, если подсчёт эритроцитарных индексов проводится совместно с оценкой эритроцитов при микроскопии мазка крови.

Также рекомендуется

Кто назначает исследование?

Врач общей практики, терапевт, гематолог, нефролог, хирург.

Анемия при беременности – железные аргументы и развеивание мифов

Анемия – одно из самых частых осложнений, возникающих во время беременности. В России этот диагноз ставится каждой третьей беременной женщине. Однако не все, столкнувшись с этим диагнозом понимают, о чём идёт речь и что надо делать, чтобы лечение было максимально эффективным.

Анемия – заболевание, при котором снижается уровень гемоглобина крови, часто при одновременном снижении числа эритроцитов. Основной причиной развития анемии является несоответствие между поступлением железа в организм и его затратами.

Во время беременности затраты на нужды растущего плода обуславливают значительное возрастание потребности в железе. Кроме того, более редкой, но возможной причиной анемии может быть недостаточное поступление фолиевой кислоты или витамина В12.

К факторам риска по развитию железодефицитной анемии во время беременности относятся:

  • обильные менструации в анамнезе;
  • заболевания желудочно-кишечного тракта;
  • инфекционно-воспалительные заболевания;
  • анемия в прошлом;
  • короткий промежуток между беременностями, в том числе зачатие во время лактации;
  • многоплодная беременность.

Поскольку главной задачей гемоглобина является доставка кислорода – жизненно важного элемента – ко всем тканям и клеткам женщины и плода, несложно представить какой вред наносит его снижение во время беременности. Однако и после родов вопрос нельзя считать закрытым. Доказано, что низкий уровень гемоглобина ассоциируется со снижением лактации, а так же с развитием анемии у ребенка.

Железодефицитная анемия проявляется слабостью, головокружением, патологической утомляемостью, извращенным восприятием вкусов и запахов, учащенным сердцебиением, отдышкой, головной болью, обмороками. Кожа становится сухой и бледной, а волосы и ногти ломкими.

Ставится диагноз анемии на основании оценки уровня гемоглобина в общем анализе крови. Нижняя граница нормы гемоглобина при беременности – 110 г/л. Однако, прежде чем снижается гемоглобин, происходит истощение запасов железа, что проявляется снижением уровня ферритина сыворотки крови. Это состояние носит название латентный дефицит железа и так же требует коррекции.

Лечение анемии и латентного дефицита железа проводят с помощью препаратов железа, которые чаще всего назначаются в виде таблеток или раствора для приёма внутрь, но иногда применяют растворы для внутривенного введения. Такая необходимость возникает, когда уровень гемоглобина очень низкий или в случае нарушения всасывания железа из желудочно-кишечного тракта.

Так же важно помнить о потенциале белковой диеты в коррекции железодефицита. Так как гемоглобин – это связь двух субъединиц – металлосодержащего гемма и белка глобина, — то при недостаточном поступлении белка даже адекватному количеству железа в организме связаться не с чем.

При диагнозе анемия пациенту важно помнить, что потребление продуктов с высоким содержанием железа поможет лишь поддержать имеющийся уровень гемоглобина, но не сможет повысить его уровень и насытить запасы железа в достаточной степени.

Отдельно хочется остановиться на том, в каких же продуктах содержание железа, действительно, высокое. Распространённым заблуждением является мнение, что при анемии нужно есть яблоки, свёклу и гранаты, а так же пить гранатовый сок. 100 грамм яблок содержат 0,5 — 2,2 мг железа; 100 грамм свёклы – 1,0 – 1,4 мг железа; 100 грамм гранатов — 0,78 мг железа. Примерно такое же количество железа содержат огурцы, клубника, тыква и другие фрукты и овощи. Для сравнения, гречка содержит 8 мг железа на 100 г продукта, сухофрукты (курага, чернослив, сушеные яблоки) — от 12 до 15 мг железа. Лидером по содержанию железа является свиная печень. Кроме того, высоко содержание этого микроэлемента в говяжьей печени, какао, чечевице, яичный желток, сердце.

Профилактикой железодефицитной анемии беременных является исследованием запасов железа и уровня гемоглобина на этапе планирования беременности, и при выявлении отклонений от нормы своевременная их коррекция, потребление продуктов с высоким содержанием железа, приём витаминно-минеральных комплексов, содержащих профилактические дозировки железа.

Врач акушер-гинеколог

женской консультации №14
Хиврич Е.Б.

Анемия: признаки, симптомы, недостаточность, диагностика, причины и профилактика

Отчет, опубликованный Всемирной организацией здравоохранения (ВОЗ) в 2011 году, показал, что у 48% женщин в возрастной группе 15-49 лет в Индии концентрация гемоглобина ниже. чем 120 г / л (12 г / дл), и у них была диагностирована анемия. Подумайте об этом, почти половина нашего женского населения в расцвете сил, возможно, страдает дефицитом железа. Когда в последний раз вам делали общий анализ крови? Обратите особое внимание на значение Hb в следующем отчете об испытаниях. Что такое анемия? Согласно ВОЗ, «анемия — это состояние, при котором количество красных кровяных телец или их способность переносить кислород недостаточны для удовлетворения физиологических потребностей, которые зависят от возраста, пола, высоты, курения и статуса беременности». Красные кровяные тельца (эритроциты) составляют самый распространенный компонент крови человека и отвечают за обеспечение жизненно важным кислородом других клеток тела. Гемоглобин, пигмент, присутствующий в красных кровяных тельцах, связывает кислород и доставляет его к различным клеткам организма.Меньшее количество эритроцитов, низкая концентрация гемоглобина или неспособность гемоглобина транспортировать достаточное количество кислорода приводят к снижению транспорта кислорода к клеткам тела и последующим физиологическим эффектам.

Каковы причины анемии? Анемия может возникнуть по разным причинам –1. Недостаток питательных веществ — дефицит витамина B12, фолиевой кислоты и железа
2. Генетические нарушения — гемолитическая анемия, серповидноклеточная анемия
3. Паразитарные инфекции — такие как малярия, анкилостомы, шистосомоз
4.Хронические заболевания — рак, ВИЧ / СПИД, заболевание почек

Железодефицитная анемия Количество железа, усваиваемого организмом, зависит не только от количества, потребляемого с пищей, но и от того, какое количество железа может быть усвоено и усвоено. тело. Железо, содержащееся в продуктах растительного происхождения (негемное железо), имеет более низкую абсорбционную способность, чем железо, содержащееся в продуктах животного происхождения, таких как красное мясо и мясные субстанции (гемовое железо). Поскольку потеря железа происходит из-за менструального кровотечения у женщин репродуктивного возраста, потребности в железе у женщин выше, чем у мужчин.Национальный институт питания, ICMR, Хайдарабад рекомендует взрослым женщинам ежедневное диетическое потребление 21 мг железа в день. Эти потребности выше у девочек-подростков, а также у беременных женщин. Потеря крови усугубляется у людей, страдающих паразитарными инфекциями, такими как анкилостомы и малярия. Чрезмерное употребление нестероидных противовоспалительных препаратов (НПВП) также может способствовать развитию железодефицитной анемии. Как диагностировать анемию? ВОЗ дает следующие пороговые значения уровней гемоглобина у женщин

Небеременные женщины (возраст: 15 лет и старше) Беременные женщины
Без анемии Гемоглобин 120 г / Л (12 г / дл) или выше Гемоглобин 110 г / л (11 г / дл) или выше
Легкая анемия Гемоглобин 110-119 г / л (11-11.9 г / дл) Гемоглобин 100-109 г / л (10-10,9 г / дл)
Умеренная анемия Гемоглобин 80-109 г / л (8-10,9 г / дл) Гемоглобин 70-99 г / л (7-9,9 г / дл)
Тяжелая анемия Гемоглобин ниже 80 г / л (8 г / дл) Гемоглобин ниже 70 г / л (7 г / дл)

Что такое Признаки и симптомы анемии? Наличие одного или нескольких из следующих признаков и симптомов может указывать на анемию — · Усталость / недостаток энергии
· Одышка
· Головные боли
· Учащенное сердцебиение
· Бледный цвет лица
· В тяжелых случаях ногти в форме ложки (койлонихия)
· Онемение рук и ног
· Низкая температура тела

Что можно сделать для предотвращения / контроля железодефицитной анемии? · Определите свой уровень гемоглобина с помощью периодических анализов.
· Следите за вышеупомянутыми признаками и симптомами.
· Увеличьте потребление железа с пищей.Продукты, богатые железом, включают:
o Темно-зеленые листовые овощи, такие как — Цветная капуста, листья колоказии и т. Д.
o Органы, особенно печень
o Соя, арахис
o Постное красное мясо Помимо еды богатые железом, следует также потреблять продукты, богатые витамином С (цитрусовые, брокколи, фруктовые соки, клубника), чтобы облегчить усвоение железа в организме. Также помните, что потребление железа должно быть в рекомендуемых пределах, чрезмерное потребление железа также может иметь пагубные последствия для здоровья.

Осведомленность — это первый шаг к профилактике, которая, в свою очередь, лучше лечения. Постоянная бдительность в отношении уровня гемоглобина и пристальное внимание к своей диете могут гарантировать, что вы избежите железодефицитной анемии.

Низкий уровень гемоглобина Когда обратиться к врачу

Некоторые люди узнают, что у них низкий гемоглобин, когда они пытаются сдать кровь. Отказ от сдачи крови — не обязательно повод для беспокойства. У вас может быть гемоглобин, который вам подходит, но не соответствует стандартам, установленным центрами сдачи крови.

Если ваш гемоглобин лишь немного ниже требуемого уровня, особенно если вы принимали участие в сдаче крови в прошлом, вам, возможно, придется подождать пару месяцев и повторить попытку. Если проблема не исчезнет, ​​запишитесь на прием к врачу.

Запишитесь на прием, если у вас есть признаки и симптомы

Если у вас есть признаки и симптомы низкого уровня гемоглобина, запишитесь на прием к врачу. Признаки и симптомы могут включать:

  • Усталость
  • Слабость
  • Бледная кожа и десны
  • Одышка
  • Учащенное или нерегулярное сердцебиение

Ваш врач может порекомендовать сделать общий анализ крови, чтобы определить, низкий ли у вас уровень гемоглобина.Если ваш тест показывает, что у вас низкий уровень гемоглобина, вам, вероятно, потребуется дополнительное тестирование, чтобы определить причину.

22 сентября 2020 г.

Показать ссылки

  1. Гемоглобин. Лабораторные тесты онлайн. https://labtestsonline.org/tests/hemoglobin. По состоянию на 6 марта 2020 г.
  2. McPherson RA, et al. Эритроцитарные нарушения. В: Клиническая диагностика и лечение Генри лабораторными методами. 23-е изд. Elsevier Inc .; 2017. https://www.clinicalkey.com. По состоянию на 6 марта 2020 г.
  3. Leung LLK.Подойдите к взрослому с анемией. https://www.uptodate.com/contents/search. По состоянию на 6 марта 2020 г.
  4. Низкое количество эритроцитов (анемия). Американское онкологическое общество. https://www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects/low-blood-counts/anemia.html. По состоянию на 6 марта 2020 г.
  5. Доноры отсрочены из-за низкого гемоглобина. Американский Красный Крест. https://www.redcrossblood.org/donate-blood/blood-donation-process/before-during-after/iron-blood-donation/donors-deferred-forlowhemoglobin.html. По состоянию на 20 марта 2020 г.

.

PLOS ONE: гемоглобин

Шуничи Сато,
Сатоко Каваути,

[…],
Гентаро Цуматори

Нисрин А. Алван,
Джанет Э. Кейд,

[…],
Дебби А. Лоулор

Приянка Дхар,
Виджей К.Шарма,

[…],
Шаши Б. Сингх

Мелисса Э. Штауфер,
Тао Фань

Трой Д. Мун,
Уилсон П. Сильва,

[…],
Паула Э. Брентлингер

Цзянь Чжоу,
Ифэй Мо,

[…],
Вэйпин Цзя

Джеймс Э. Джейкобс,
Марк Вагнер,

[…],
Дэвид И. К. Мартин

Сяогуан Ван,
Марк С. Харгроув

Юсуке Кабея,
Ацуши Гото,

[…],
Мицухико Нода

Игнасио Риччи-Кабельо,
Изабель Руис-Перес,

[…],
Даниэла К. Гонсалвеш

Сопна Чоудхури,
Шакир Хуссейн,

[…],
Шахрад Тахери

Прити Х. Неганди,
Назим Гури,

[…],
от имени Эпидемиологической группы Шотландской исследовательской сети диабета

Низкое кровяное давление — когда кровяное давление слишком низкое

Насколько низкое значение артериального давления слишком низкое?

В определенных пределах, чем ниже значение артериального давления, тем лучше. Также не существует конкретного числа, при котором повседневное артериальное давление считается слишком низким, если отсутствуют какие-либо симптомы проблемы.

Симптомы пониженного давления

Большинство врачей считают хроническое низкое артериальное давление опасным только в том случае, если оно вызывает заметные признаки и симптомы, например:

  • Головокружение или дурноту
  • Тошнота
  • Обморок (обморок)
  • Обезвоживание и необычная жажда
  • Обезвоживание может иногда вызывать снижение артериального давления. Однако обезвоживание не всегда вызывает снижение артериального давления. Лихорадка, рвота, сильная диарея, чрезмерное употребление мочегонных средств и физические упражнения могут привести к обезвоживанию, потенциально серьезному состоянию, при котором ваше тело теряет больше воды, чем вы потребляете.Даже легкое обезвоживание (потеря от 1 до 2 процентов веса тела) может вызвать слабость, головокружение и усталость.
  • Недостаток концентрации
  • Затуманенное зрение
  • Холодная, липкая, бледная кожа
  • Быстрое поверхностное дыхание
  • Усталость
  • Депрессия

Основные причины низкого артериального давления

Низкое кровяное давление может возникнуть с:

  • Постельный режим длительного действия
  • Беременность. В течение первых 24 недель беременности артериальное давление обычно падает.
  • Уменьшение объема крови: уменьшение объема крови также может вызвать падение артериального давления. Значительная потеря крови в результате серьезной травмы, обезвоживания или сильного внутреннего кровотечения уменьшает объем крови, что приводит к серьезному падению артериального давления.
  • Некоторые лекарства: Ряд лекарств может вызывать низкое кровяное давление, включая диуретики и другие лекарства, которые лечат гипертонию; сердечные препараты, такие как бета-блокаторы; лекарства от болезни Паркинсона; трициклические антидепрессанты; препараты для лечения эректильной дисфункции, особенно в комбинации с нитроглицерином; наркотики и алкоголь.Другие лекарства, отпускаемые по рецепту и без рецепта, могут вызывать низкое кровяное давление при приеме в сочетании с лекарствами от высокого кровяного давления.
  • Проблемы с сердцем: К сердечным заболеваниям, которые могут привести к низкому кровяному давлению, относятся аномально низкая частота сердечных сокращений (брадикардия), проблемы с сердечными клапанами, сердечный приступ и сердечная недостаточность. Ваше сердце может не обеспечивать циркуляцию крови, достаточной для удовлетворения потребностей вашего организма.
  • Эндокринные проблемы: К таким проблемам относятся осложнения, связанные с вырабатывающими гормоны железами в эндокринной системе организма; в частности, недостаточная активность щитовидной железы (гипотиреоз), заболевание паращитовидных желез, недостаточность надпочечников (болезнь Аддисона), низкий уровень сахара в крови и, в некоторых случаях, диабет.
  • Тяжелая инфекция (септический шок): септический шок может возникнуть, когда бактерии покидают первоначальный очаг инфекции (чаще всего в легких, брюшной полости или мочевыводящих путях) и попадают в кровоток. Затем бактерии производят токсины, которые поражают кровеносные сосуды, что приводит к глубокому и опасному для жизни снижению артериального давления.
  • Аллергическая реакция (анафилаксия): Анафилактический шок — это аллергическая реакция, иногда со смертельным исходом, которая может возникать у людей, которые очень чувствительны к таким лекарствам, как пенициллин, к некоторым продуктам питания, таким как арахис, или к укусам пчел или ос.Этот тип шока характеризуется проблемами с дыханием, крапивницей, зудом, опухшим горлом и внезапным резким падением артериального давления.
  • Нервно-опосредованная гипотензия: в отличие от ортостатической гипотензии, это заболевание вызывает падение артериального давления после длительного стояния, что приводит к таким симптомам, как головокружение, тошнота и обмороки. Это заболевание в первую очередь поражает молодых людей и возникает из-за недопонимания между сердцем и мозгом.
  • Недостаток питательных веществ: недостаток необходимых витаминов B-12 и фолиевой кислоты может вызвать анемию, которая, в свою очередь, может привести к низкому кровяному давлению.

Если вы заметили внезапное снижение артериального давления

Единичное показание ниже нормы не является поводом для тревоги, если только вы не испытываете каких-либо других симптомов или проблем. Если вы испытываете головокружение, дурноту, тошноту или другие симптомы, рекомендуется проконсультироваться со своим врачом. Чтобы помочь с диагнозом, записывайте свои симптомы и действия на момент их появления.

Связано ли низкое кровяное давление с низкой частотой сердечных сокращений? Выяснить.

результатов из 4 африканских стран (испытание ANRS 12174) — отпечаток пальца — исследование @ Flinders

Изменения индекса массы тела и концентрации гемоглобина у кормящих женщин, живущих с ВИЧ, с числом CD4 более 350: результаты из 4 африканских стран (испытание ANRS 12174) — отпечаток пальца
— Исследования @ Flinders

  • Сортировать по
  • Масса

  • По алфавиту

Химические соединения

  • Человеческое молоко

  • Лопинавир

  • Ритонавир

  • Ламивудин

  • Гемоглобины

Медицина и науки о жизни

  • Количество лимфоцитов CD4

  • Кормление грудью

  • Гемоглобины

  • Индекс массы тела

  • ВИЧ

  • Матери

  • ВИЧ-1

Сельское хозяйство и биология

  • индекс массы тела

  • кормление грудью

  • гемоглобин

  • Вирус иммунодефицита человека 1

  • ламивудин

  • борьба с болезнями

  • ВИЧ-инфекции

  • грудное вскармливание

не только для долгосрочной контрацепции

Введение

Среди женщин, использующих обратимую контрацепцию в США, 16% используют внутриматочную спираль (ВМС), равную 4.4 миллиона женщин в 2014 году. 1,2 Сегодня доступно пять ВМС: Paragard®, негормональная медная ВМС, и четыре препарата для гормональной внутриматочной системы (ВМС), содержащие левоноргестрел — Liletta®, Mirena®, Kyleena® и Skyla. ®. Эти системы классифицируются по количеству левоноргестрела, которое они содержат — 52, 19,5 или 13,5 мг. Количество гормона определяет эффективность, профиль кровотечения и рекомендации по продолжительности использования.

ВМС на 52 мг приобрела популярность как высокоэффективный обратимый противозачаточный препарат благодаря ряду преимуществ, включая способность значительно снизить менструальную кровопотерю и улучшить дисменорею.Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США впервые одобрило ВМС в дозе 52 мг для Мирены сроком на 5 лет. В 2009 г. добавлено показание для лечения обильных менструальных кровотечений. 3 Вторая ВМС левоноргестрела 52 мг, Liletta, была первоначально одобрена для использования в качестве противозачаточных средств на 3 года в 2015 году, а по состоянию на октябрь 2019 года одобрена на срок до 6 лет. 4

Стремление вывести Liletta на рынок в качестве второй ВМС на основе левоноргестрела 52 мг было основано на ценовых барьерах. Незапланированная беременность, незапланированные роды и аборты непропорционально высоки среди женщин с низким социально-экономическим статусом (СЭС). 5 Хотя причины для этих выводов многофакторны, существует установленная взаимосвязь между низким SES и менее эффективным использованием контрацепции. 5 Когда стоимость устраняется в качестве барьера, использование обратимых контрацептивов длительного действия (LARC) резко возрастает. 1,6,7

В рамках Управления ресурсов и услуг здравоохранения (HRSA) производители, участвующие в программе Medicaid, могут предоставлять лекарства по значительно сниженным ценам соответствующим организациям / организациям в рамках Программы ценообразования на лекарства 340B. 8 Medicines360, некоммерческая фармацевтическая компания для здоровья женщин, которая вывела Liletta на рынок США, участвует в программе 340B и предлагает цену примерно в три раза ниже, чем на Mirena. 9,10 Эта значительно более низкая стоимость снижает нагрузку на клиники и поставщиков услуг по хранению устройства и обеспечивает немедленный доступ, что может помочь устранить необходимость в многократных посещениях для установки ВМС. 11 Немедленный доступ улучшает использование ВМС, особенно у женщин с государственной страховкой, которые будут получать ВМС только в половине случаев, когда требуются два посещения. 11

Реальная оценка этого недорогого варианта левоноргестрела 52-мг ВМС в нескольких клиниках Title X в Юте привела к немедленному увеличению приема. 12 Низкая стоимость финансово поддерживается за счет продаж в частном секторе, таких как носки Toms Shoes и Bombas, где продажи в частном секторе поддерживают возможность низких или нулевых затрат в государственном секторе. Как медицинское сообщество, эта возможность позволяет всем поставщикам услуг участвовать в усилиях по предоставлению справедливой помощи и расширению доступа.

Liletta имеет Т-образный полиэтиленовый каркас с такими же размерами, как Мирена. 3,4 Вставки немного отличаются; перезагружаемый инсертер Liletta на 2 см длиннее неперезагрузочного устройства Mirena, а инсертер Mirena немного уже, чем инсертер Liletta (4,3 мм против 4,8 мм). Несмотря на эти различия, зарегистрированные успешные показатели внедрения из испытаний фазы 3 составляют от 98% до 99% для обоих продуктов. 13,14 Вертикальный стержень ВМС содержит резервуар 52 мг левоноргестрела, покрытый мембраной, контролирующей скорость высвобождения. 4,15 Liletta производит начальную скорость высвобождения 19,5 мкг / день, которая медленно снижается с течением времени до 9,8 мкг / день в конце 5 лет, что отражает скорость высвобождения Мирены. 15 Для сравнения, скорость высвобождения левоноргестрела 13,5 мг ВМС в конце трехлетнего периода составляет 5 мкг / день. 16

Расчетная приблизительная скорость выпуска на основе этой информации поддерживает использование Liletta для контрацепции на срок более 5 лет. 15 Liletta изучается в рамках проспективного клинического исследования фазы 3, направленного на продление утвержденной продолжительности применения левоноргестрела 52-мг ВМС и оценку потенциальных неконтрацептивных преимуществ или побочных эффектов устройства среди разнообразного населения США. 14,15,17-22 В этом обзоре представлены основные результаты продолжающегося клинического испытания и важные вопросы для обсуждения, на которые можно ссылаться во время консультирования пациентов, чтобы усилить общий процесс принятия решений при выборе метода контрацепции.

ACCESS IUS был разработан для оценки эффективности и безопасности Liletta среди различных групп женщин в Соединенных Штатах. Это многоцентровое открытое клиническое исследование фазы 3, проводимое в 29 центрах США, включая государственные, частные и университетские учреждения.Из 1751 женщины 1600 участников были в возрасте от 16 до 35 лет и были включены в оценку эффективности, а 151 участник в возрасте от 36 до 45 лет был включен для общей оценки безопасности. Первичным результатом была беременность во время лечения, определяемая как любая беременность с датой зачатия, начинающейся со дня установки Liletta и через 7 дней после прекращения ВМС. 14,15,17-22

Противозачаточная эффективность в течение 6 лет

Из 1751 включенных в исследование женщин 98 успешно установили ВМС среди женщин, которые пытались установить ВМС.7%. 17 Причины неудачной установки включали невозможность зондирования матки (n = 15, 0,9%) и измерение матки при зондировании менее 5,5 см (n = 2, 0,1%). В первый год было две беременности — одна внутриутробная беременность после изгнания ВМС Liletta и одна внематочная беременность, связанная с перфорацией матки. Индекс Перла (количество беременностей на 100 женщин-лет) составляет 0,15 (95% ДИ 0,02–0,55) в течение 1 года. 14 К концу пятого года общее число беременностей у более чем 1500 женщин составило девять, что составляет более 6300 28-дневных циклов. 18

Из девяти беременностей шесть были внематочными, в результате чего коэффициент внематочной беременности через 5 лет составил 0,13 на 100 женщин-лет. 18 Не было зарегистрировано беременностей в 6-м году. 17 Показатели беременности представлены в таблице 1. 17 На основании этих данных FDA одобрило использование Liletta для предотвращения беременности в течение 6 лет в октябре 2019 года, а также исследование продолжается уже 10 лет использования ВМС. 17

Помимо высокой эффективности в предотвращении беременности, Liletta также тщательно изучалась для оценки профиля кровотечения во время использования.Аменорея, вторичная по отношению к гормональной контрацепции, часто является желательной характеристикой

, как показано в исследовании ACCESS IUS, в котором только один участник прекратил прием препарата Лилетта (на втором году использования) из-за аменореи. 18 Сообщается, что у Мирены 20% случаев аменореи в первый год использования 3 , но возможность обобщения ограничена из-за перекоса популяции повторнородящих белых женщин с нормальным весом, которые ранее использовали внутриматочный метод. 21 Итак, исследователи использовали данные ACCESS IUS для детальной оценки аменореи и характера кровотечений в течение первого года использования. 21

В первый год 28 женщин (1,8%) прекратили использование левоноргестрела ВМС при жалобах на кровотечение. Среди женщин, которые ранее не использовали левоноргестрел ВМС, частота аменореи составляла 17%, что было таким же показателем через 9 и 12 месяцев. 21 Среди женщин, использующих левоноргестрел ВМС до включения в исследование, частота аменореи составляет 35% через 9 и 12 месяцев. 21 Частота аменореи у пользователей левоноргестрела 52 мг ВМС продолжает расти в течение 6 лет. По истечении 2 и 3 лет 27% и 36% пользователей сообщили об аменорее в предыдущие 90 дней 2 и 3 лет соответственно. 22 Уровень остается около 40% в 4, 5 и 6 годы. 17,18

Левоноргестрел 52-мг ВМС также примечателен другим снижением уровня маточных кровотечений. Поскольку эти модели кровотечения могут быть более субъективными, определения Бесли предоставляют объективное руководство для измерения изменений во времени (Таблица 2). 22,23

Распространенность аменореи и нечастых, частых, нерегулярных и продолжительных кровотечений описаны в таблице 3. Обычно у пользователей наблюдаются частые, нерегулярные и / или продолжительные кровотечения в течение первых 3 месяцев, которые переходят к менее частым, менее длительным кровотечениям к 6 месяцам и более (Таблица 3). 22 В то время как прямые сравнения между продуктами ВМС с различными количествами левоноргестрела затруднены из-за различий в дизайне исследований и популяциях, как устройства для ВМС с левоноргестрелом 13,5 мг и 19,5 мг, как отмечается, имеют более низкую частоту аменореи и нечастых кровотечений по сравнению с устройствами 52- мг ВМС. 16,22,24 Эта информация о характере кровотечения важна для предоставления точной информации пациентам, рассматривающим возможность использования левоноргестрела 52-мг ВМС.

Мирена в настоящее время показана для лечения тяжелых менструальных кровотечений (HMB) в США, а Liletta имеет те же показания во всех странах, кроме США. 3,25 Использование Liletta увеличивает уровни гемоглобина и сывороточного ферритина, 26 и в рандомизированном исследовании, сравнивающем Мирену и Liletta в течение 12 месяцев у женщин с HMB, не было различий в средней кровопотере, значениях ферритина или гемоглобина между два продукта. 27

HMB количественно определяется как ≥ 80 мл на цикл, 20,28 , но субъективное восприятие его обычно используется для диагностики в клинической практике. 29 Изменения кровотечений у женщин, которые субъективно сообщают о HMB, были оценены на пользователях Liletta.Среди женщин, использующих Liletta для контрацепции, которые самостоятельно сообщали о HMB на исходном уровне, 75% сообщили об отсутствии его к концу первого цикла (28 дней). К 6 месяцам 92% сообщили об отсутствии HMB, а к концу 2 лет этот показатель вырос до 97%. К 1 и 2 годам 51% и 64% соответственно сообщили о своем кровотечении как аменорее или кровянистых выделениях. 20

Общие нежелательные явления (НЯ), возникающие при использовании Liletta в течение 6 и более лет, включали вагинальную бактериальную инфекцию (17,4%), вульвовагинальную грибковую инфекцию (16.6%) и инфекции мочевыводящих путей (16,9%). 17 Перфорация матки произошла у двух участников (0,1%), оба из которых были выявлены в первый год использования. 18

Поскольку женщины могут столкнуться со многими событиями за годы использования, прекращение приема — более ощутимый результат для оценки. В целом 329 (19,2%) субъектов, наблюдаемых в течение 8 лет, прекратили исследование из-за НЯ. 17 Наиболее распространенные побочные эффекты, приводящие к прекращению использования, и их частота перечислены в таблице 4.Частичное или полное исключение было наиболее частой причиной, встречающейся у 4% пользователей Liletta, 73% из которых произошли в течение первого года использования ВМС. 17,18 Показатели изгнания были аналогичны ранее сообщенным значениям 30 и в три раза чаще встречались у повторнородящих по сравнению с первородящими особями. 18 В целом, только 8,4% женщин, участвовавших в исследовании Liletta, прекратили участие в исследовании из-за НЯ без исключения.

Наиболее частыми событиями (≥ 1%) были жалобы на кровотечение, акне, дисменорея и увеличение веса. 17 Следует отметить, что в исследованиях Мирены часто сообщалось о кистах яичников, в первую очередь потому, что эти исследования включали увеличенные бессимптомные кисты, которые были выявлены во время обязательных ультразвуковых исследований. 31,32 В исследовании Liletta оценивали только женщин с симптомами, сообщая о кисте яичника у 78 участников (4,5%), из которых только шесть (0,3%) потребовали удаления ВМС. 18 Одна (0,06%) выявленная киста яичника потребовала хирургического вмешательства. 18

Еще одно важное наблюдение этого исследования — очень низкий риск инфицирования при современной практике введения ВМС.В этом проспективном испытании участники могли пройти курс лечения Лилеттой в тот же день, и им не приходилось откладывать получение результатов тестирования на инфекции, передаваемые половым путем (ИППП). Исследователи лечили пользователей ВМС, у которых был обнаружен положительный результат тестирования после введения ВМС.

Инфекция органов малого таза была диагностирована у 14 участников (0,8%) в течение периода наблюдения до 8 лет, в том числе у двоих был поставлен диагноз после 4-го года. 17 Эти результаты также подтверждают введение ВМС в тот же день и амбулаторное лечение антибиотиками при положительных результатах тестов. без одновременного удаления ВМС и в целом очень низкий риск заражения при длительном использовании. 17,19

ACCESS IUS — это надежное, продолжающееся клиническое испытание фазы 3, которое продолжает информировать врачей о Liletta. Исследователи сообщили о показателях эффективности до 6 лет, что является текущим одобренным FDA сроком, с планами продолжить исследование, чтобы предоставить данные через 10 лет. Перспективные данные улучшают понимание характера кровотечений, включая частоту аменореи, а также побочные эффекты и осложнения, приводящие к прекращению лечения. Эти и будущие данные улучшат способность врачей давать эффективные консультации и обеспечат общие ожидания в отношении варианта высокоэффективной контрацепции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *