Функция углеводов таблица: Функции углеводов – основные в организме человека и клетке в таблице
Таблица по биологии 9 класс Роль белков, жиров, углеводов, минеральных солей и воды
Изображения обложек учебников приведены на страницах данного сайта исключительно в качестве иллюстративного материала (ст. 1274 п. 1 части четвертой Гражданского кодекса Российской Федерации)
Издательство: Ксеноксс
Вид УМК: таблицы
Серия: Домашняя работа
На данной странице представлено детальное решение задания Роль белков, жиров, углеводов, минеральных солей и воды по биологии для учеников 9 классa автор(ы)
Роль белков, жиров, углеводов, минеральных солей и воды
Белки |
Строительная функция, дыхательная функция (гемоглобин). Являются ферментами, входят в состав антител => выполняют каталитическую функцию, участвуют в свёртывании крови (фибриноген) и в транспортировке газов (гемоглобин), энергетическую функцию. Входят в состав костей => выполняют опорную функцию. В клетках из аминокислот строятся белки тела => защитная функция, структурно-пластическая функция. |
Жиры |
Используется как запасное вещество и строительный материал => структурно-пластическая функция. При окислении выделяют энергию => энергетическая функция. При распаде жиров выделяется много воды => поддержание водного обмена. Выделяемые кожными сальными железами жиры делают кожу мягкой => теплоизоляционная функция. Жиры предохраняют важные органы от сотрясений => защитная функция. Производные жиров используются в работе синапсов; жиры входят в состав клеточных мембран => регуляторная функция. |
Углеводы |
Продукты распада углеводов всасываются кишечными ворсинками и направляются в печень => структурно-пластическая функция. Головной мозг не может функционировать, если к нему в качестве энергетического материала не поступит глюкоза, которая является источником энергии => источник энергии. Углеводы взаимодействуют в печени со многими ядовитыми соединениями, переводя их в безвредные, легкорастворимые вещества => защитная функция. |
Минеральные соли | Необходимы для поддержания кислотно-щелочного равновесия в клетках тела и во внутренней среде организма. |
Вода | Поддержание определённого баланса между поступающей и выделяемой водой. Сохранение водно-солевого равновесия. |
Рис. 1. Таблица по биологии 9 класс Роль белков, жиров, углеводов, минеральных солей и воды
Add
Новыe решебники
Похожие решебники
по биологии 9 класс
© 2021Copyright. Все права защищены. Правообладатель SIA Ksenokss.
Адрес: 1069, Курземес проспект 106/45, Рига, Латвия.
Тел.: +371 29-851-888 E-mail: [email protected]
К какой группе органических веществ относится гликоген. Строение, свойства и функции углеводов
Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.
Что такое углеводы?
Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго — и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.
Виды сахаров
Органические соединения делятся на две группы — простые и сложные. Углеводы первого типа — моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:
- Глюкоза.
- Фруктоза.
- Галактоза.
- Сахароза.
- Лактоза.
- Мальтоза.
- Раффиноза.
- Крахмал.
- Целлюлоза.
- Хитин.
- Мурамин.
- Гликоген.
Список углеводов обширен. Остановимся на некоторых из них подробнее.
Простая группа углеводов
В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов — альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых — кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах — твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.
Представители группы
Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах — линейной и циклической. Наиболее точно описывает химические свойства глюкозы — это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.
Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.
И третий представитель простых углеводов — фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.
Продукты, богатые простыми сахарами
- 90 г — кукурузный сироп.
- 50 г — сахара-рафинад.
- 40,5 г — мед.
- 24 г — инжир.
- 13 г — курага.
- 4 г — персики.
Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:
- 99,9 г — сахар-рафинад.
- 80,3 г — мед.
- 69,2 г — финики.
- 66,9 г — перловая крупа.
- 61,8 г — овсяные хлопья.
- 60,4 г — гречка.
Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.
Олигосахариды
Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.
Лактоза, мальтоза и сахароза
Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.
Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.
Полисахариды
Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:
1. По строению мономеров, включенных в цепь.
2. По порядку нахождения моносахаридов в цепи.
3. По типу гликозидных связей, которые соединяют мономеры.
Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй — хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.
Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе — 78 г. Чуть меньше в макаронах и пшене — 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.
Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.
В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.
К полисахаридам также относятся следующие вещества:
1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.
2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.
3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.
4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.
Белки и углеводы. Продукты. Список
Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:
- Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
- От 31 до 70 г — в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
- От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
- От 6 до 15 г — в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
- До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.
Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.
Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.
Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:
- Рис с рыбой.
- Картофель и курица.
- Макароны и мясо.
- Бутерброды с сыром и ветчиной.
- Рыба в панировке.
- Ореховые пирожные.
- Омлет с ветчиной.
- Мучное с ягодами.
- Дыню и арбуз нужно есть отдельно за час до основного приема пищи.
Хорошо сочетаются:
- Мясо с салатом.
- Рыба с овощами или на гриле.
- Сыр и ветчина по отдельности.
- Орехи в целом виде.
- Омлет с овощами.
Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов… Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.
«Плохие» и «хорошие» углеводы
«Быстрые» (или «неправильные») вещества — соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:
1. Кондитерские изделия.
3. Варенье.
4. Сладкие соки и компоты.
7. Картофель.
8. Макароны.
9. Белый рис.
10. Шоколад.
В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.
«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:
- Хлеб с отрубями и цельнозерновой.
- Гречневая и овсяная каши.
- Зеленые овощи.
- Макароны из грубого помола.
- Грибы.
- Горох.
- Красная фасоль.
- Помидоры.
- Молочные продукты.
- Фрукты.
- Горький шоколад.
- Ягоды.
- Чечевица.
Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление «неправильных» углеводов, так как при их использовании человек получает пищу в большем объеме. «Правильные» питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от «плохих» углеводов, а лишь только их разумное употребление.
§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ
Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез
). Суммарное стехиометрическое уравнение этого процесса имеет вид:
Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:
Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.
Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.
Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой С m H 2 n O n или C m (H 2 O) n . Другое название углеводов – сахара
– объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.
Классификация углеводов
Все известные углеводы можно подразделить на две большие группы – простые углеводы
и сложные углеводы
. Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины
– комплекс с молекулой белка, гликолипиды –
комплекс с липидом, и др.
Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С 3), тетрозы (С 4), пентозы (С 5), гексозы (С 6) и т.д.:
Наиболее часто в природе встречаются пентозы и гексозы.
Сложные
углеводы (полисахариды
, или полиозы
) представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды
, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные
. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu 2+ , Ag +) делят на восстанавливающие
и невосстанавливающие
. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды
и гетерополисахариды
. Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.
Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:
Функции углеводов
Биологические функции полисахаридов весьма разнообразны.
Энергетическая и запасающая функция
В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим с пищей, является крахмал. Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.
Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота
которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.
В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:
В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.
Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:
Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.
Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.
В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу
, катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.
Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген
у животных являются энергетическим резервом их клеток.
Структурная, опорная и защитная функции
Целлюлоза у растений и хитин
у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.
Защитную функцию выполняет гепарин
. Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.
Регуляторная функция
Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.
Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:
а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.
План:
1.Определение понятия: углеводы. Классификация.
2. Состав, физические и химические свойства углеводов.
3.Рспространение в природе. Получение. Применение.
Углеводы
– органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу C n (H 2 O) m , (где n и m>3).
Углеводы
– вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, С м Н 2п О п. При вынесении «n» за скобки получается формула С м (Н 2 О) n , которая очень наглядно отражает название «угле — воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле С м H 2п О п. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.
Углеводы
можно разделить на три группы
:
1) Моносахариды
– углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды
– продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды
– полимерные соединения, содержащие большое число молекул моносахаридов.
Моносахариды
.
Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения — полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.
Получение.
В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза) + 6O 2
Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым
Вспомните!
Какие вещества называют биологическими полимерами?
Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.
Каково значение углеводов в природе?
Широко распространена в природе фруктоза — фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар, — состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.
Назовите известные вам белки. Какие функции они выполняют?
Гемоглобин – белок крови, транспорт газов в крови
Миозин – белок мышц, сокращение мышц
Коллаген – белок сухожилий, кож, эластичность, растяжимость
Казеин – белок молока, питательное вещество
Вопросы для повторения и задания
1. Какие химические соединения называют углеводами?
Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.
2. Что такое моно- и дисахариды? Приведите примеры.
Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид — сахароза, или тростниковый сахар.
3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?
4. Из каких органических соединений состоят белки?
Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Две полипептидные цепи, из которых состоит гормон поджелудочной железы — инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин — белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.
5. Как образуются вторичная и третичная структуры белка?
Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации — вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.
6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?
Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».
Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.
7. Что такое денатурация белка? Что может явиться причиной денатурации?
Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.
Подумайте! Вспомните!
1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.
Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.
2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?
Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени. Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.
О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70-120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.
Понижение активности одного из ферментов углеводного обмена — мышечной фосфорилазы — ведет к мышечной дистрофии.
3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?
В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).
4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.
Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.
Углеводы в продуктах питания.
Углеводы являются основным и легко доступным источником энергии для организма человека. Все углеводы представляют собой сложные молекулы состоящие из углерода(С), водорода(H) и кислорода(O), название происходит от слов «уголь» и «вода».
Из известных нам основных источников энергии, можно выделить три:
Углеводы (до 2% запасов)
— жиры (до 80% запасов)
— белки (до 18% запасов )
Углеводы являются самым быстрым топливом, которое в первую очередь используется для производства энергии, но их запасы очень малы (в среднем 2% от общего объема) т.к. для их накопления требуется много воды (для задержки 1г углеводов нужно 4г воды), а для отложения жиров вода не требуется.
Основные запасы углеводов хранятся в организме в виде гликогена (сложный углевод). Большая его масса содержится в мышцах (около 70%), остальное в печени (30%).
Все остальные функции углеводов а так же их химическое строение вы можете узнатьУглеводы в продуктах питания, классифицируются следующим образом.
Виды углеводов.
Углеводы, в простой классификации делятся на два основных класса: простые и сложные. Простые, в свою очередь состоят из моносахаридов и олигосахаридов, сложные из полисахаридов и волокнистых.
Простые углеводы.
Моносахариды
Глюкоза
(«виноградный сахар», декстроза).
Глюкоза
– наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В организме человека глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Способностью усваивать глюкозу обладают все клетки организма животных. В то же время, способностью использовать другие источники энергии — например, свободные жирные кислоты и глицерин, фруктозу или молочную кислоту — обладают не все клетки организма, а лишь некоторые их типы. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как «топливо» для клеток. Глюкоза – необходимый компонент обмена углеводов
. При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).
Глюкоза «в чистом виде», как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.
Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.Фруктоза
(фруктовый сахар).
Фруктоза
является одним из самых распространенных углеводов
фруктов. В отличие от глюкозы она может без участия инсулина (гормон, который снижает уровень глюкозы в крови) проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов
для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное «топливо» — глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов
.
Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.Галактоза
(разновидность молочного сахара).
Галактоза
в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод
молока и молочных продуктов.Олигосахариды
Сахароза
(столовый сахар).
Сахароза
– это дисахарид (углевод состоящий из двух компонентов), образованный молекулами глюкозы и фруктозы. Самый распостраненный вид сахарозы это – сахар.
Содержание сахарозы в сахоре – 99.5%, фактически сахар это чистая сахароза.
Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар – это чистый углевод
и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.Лактоза
(молочный сахар).
Лактоза
расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы
. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот «пучит». В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.
Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание — галактоземия,
которая ведет к умственной отсталости.
Содержание лактозы в коровьем молоке составляет 4,7%, в твороге – от 1,8% до 2,8%, в сметане – от 2,6 до 3,1%, в кефире – от 3,8 до 5,1%, в йогуртах – около 3%.Мальтоза
(солодовый сахар).
Образуется при соединении двух молекул глюкозы. Содержится в таких продуктах как: солод, мед, пиво, патока, хлебобулочные и кондитерские изделия изготовленные с добавлением патоки.Атлетам следует избегать приема глюкозы в чистом виде и продуктов богатых простыми сахарами в больших количествах, так как они запускают процесс образования жира.
Сложные углеводы.
Сложные углеводы состоят в основном из повторяющихся звеньев соединений глюкозы. (полимеры глюкозы)
Полисахариды
Растительные полисахариды
(крахмал).
Крахмал
– основной из перевариваемых полисахаридов, он представляет собой сложную цепочку, состоящую из глюкозы. На его долю приходится до 80% потребляемых с пищей углеводов. Крахмал — это сложный или «медленный» углевод, поэтому он является предпочтительным источником энергии как при наборе массы, так и при похудении. В желудочно-кишечном тракте крахмал поддается гидролизу (разложение вещества под действием воды) расщепляется на декстрины (фрагменты крахмала), а в итоге на глюкозу и уже в таком виде усваивается организмом.
Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% — в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» — 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. А так же можно отметить не малое содержание крахмала в картофеле (15-18%).Животные полисахариды
(гликоген).
Гликоген
— состоит из сильно разветвленных цепочек молекул глюкозы. После приема пищи в кровь начинает поступать большое количество глюкозы и организм человека запасает излишки этой глюкозы в виде гликогена. Когда уровень глюкозы в крови начинает снижаться (например при выполнении физических упражнений), организм с помощью ферментов расщепляет гликоген, в результате чего уровень глюкозы остается в норме и органы (в том числе, мышцы во время тренировки) получают достаточное ее количество для производства энергии. Гликоген откладывается главным образом в печени и мышцах.Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%). Общий запас гликогена составляет 100-120 г. В бодибилдинге имеет значение только тот гликоген, который содержится в мышечной ткани.Волокнистые
Пищевая клетчатка
(неусваиваемые, волокнистые)
Пищевая клетчатка или пищевые волокна
относится к питательным веществам, которые, подобно воде и минеральным солям, не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Пищевая клетчатка, которая содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Обычно она объединяется с другими питательными веществами.Виды клетчатки.
Целлюлоза и Гемицеллюлоза
Целлюлоза
присутствует в непросеянной пшеничной муке, отрубях, капусте, молодом горохе, зеленых и восковидных бобах, брокколи, брюссельской капусте, в огуречной кожуре, перцах, яблоках, моркови.
Гемицеллюлоза
содержится в отрубях, злаковых, неочищенном зерне, свекле, брюссельской капусте, зеленых побегах горчицы.
Целлюлоза и гемицеллюлоза впитывают воду, облегчая деятельность толстой кишки. В сущности, они «придают объем» отходам и быстрее продвигают их по толстому кишечнику. Это не только предотвращает возникновение запоров, но и защищает от дивертикулеза, спазматического колита, геморроя, рака толстой кишки и варикозного расширения вен.Лигнин
Данный тип клетчатки встречается в злаковых, употребляемых на завтрак, в отрубях, лежалых овощах (при хранении овощей содержание лигнина в них увеличивается, и они хуже усваиваются), а также в баклажанах, зеленых бобах, клубнике, горохе, редисе.
Лигнин уменьшает усваиваемость других волокон. Кроме того, он связывается с желчными кислотами, способствуя снижению уровня холестерина, и ускоряет прохождение пищи через кишечник.Камеди и Пектин
Камеди
содержится в овсяной каше и других продуктах из овса, в сушеных бобах.
Пектин
присутствует в яблоках, цитрусовых, моркови, цветной и кочанной капусте, сушеном горохе, зеленых бобах, картофеле, землянике, клубнике, фруктовых напитках.
Камеди и пектин влияют на процессы всасывания в желудке и тонком кишечнике. Связываясь с желчными кислотами, они уменьшают всасывание жира и снижают уровень холестерина. Задерживают опорожнение желудка и, обволакивая кишечник, замедляют всасывание сахара после приема пищи, что полезно для диабетиков, так как снижает необходимую дозу инсулина.Зная виды углеводов, и их функции, возникает следующий вопрос –
Какие углеводы и сколько употреблять в пищу?
В большинстве продуктов основным составляющим являются углеводы, поэтому с их получением из пищи ни каких проблем возникнуть не должно, поэтому в суточном рационе большинства людей основную часть составляют именно углеводы.
У углеводов, которые попадают в наш организм с пищей, существует три пути метаболизма:1) Гликогенез
(поступившая сложностаставная углеводная пища в наш желудочно-кишечный тракт расщепляется на глюкозу, а затем запасается в виде сложных углеводов – гликогена в клетках мышц и печени, и используется как резервный источник питания, когда концентрация глюкозы в крови низкая)
2) Глюконеогенез
(процесс образования в печени и корковом веществе почек (около 10%) — глюкозы, из аминокислот, молочной кислоты, глицерина)
3) Гликолиз
(расщепление глюкозы и других углеводов с выделением энергии)Метаболизм углеводов в основном определяется наличием глюкозы в кровотоке, этого важного и универсального источника энергии в организме. Наличие же глюкозы в крови, зависит от последнего приема и питательного состава пищи. То есть если вы недавно позавтракали, то концентрация глюкозы в крови будет высокой, если продолжительное время воздерживаетесь от еды – низкой. Меньше глюкозы – меньше энергии в организме, это очевидно, вот почему на голодный желудок ощущается упадок сил. В то время, когда содержание глюкозы в кровотоке низкое, а это очень хорошо наблюдается в утренние часы, после продолжительного сна, в течении которого вы ни как не поддерживали уровень имеющейся глюкозы в крови порциями углеводной пищи, запускается подпитка организма в состоянии голодания с помощью гликолиза — 75%, и на 25% с помощью глюконеогенеза, то есть расщеплением сложных запасенных углеводов, а так же аминокислот, глицерина и молочной кислоты.
Так же, не мало важное значение в регулировании концентрации глюкозы в крови оказывает гормон поджелудочной железы – инсулин
. Инсулин транспортный гормон, он разносит излишки глюкозы в клетки мышц и другие ткани организма, тем самым регулируя максимальный уровень глюкозы в крови. У людей склонных к полноте, которые не следят за своей диетой, излишки поступающих с пищей углеводов в организм инсулин преобразует в жир, в основном это характерно для быстрых углеводов.
Что бы выбрать правильные углеводы из всего разнообразия пищи используется такое понятие как – гликемический индекс
.Гликемический индекс
– это скорость всасывания поступаемых с пищей углеводов в кровоток и инсулиновая реакция поджелудочной железы. Он показывает влияние продуктов на уровень сахара в крови. Этот индекс измеряется по шкале от 0 до 100, зависит от видов продуктов, разные углеводы по разному усваиваются, какие то быстро, и соответственно у них будет гликемический индекс высокий, какие то медленно, эталоном быстрого всасывания, является чистая глюкоза, у нее гликемический индекс равен 100.ГИ продукта зависит от некоторых факторов:
— Вид углеводов (простые углеводы обладают высоким ГИ, сложные – низким)
— Количество клетчатки (чем ее больше в пище, тем ниже ГИ)
— Способ обработки продуктов (например при тепловой обработке повышается ГИ)
— Содержание жиров и белков (чем больше их в пище, тем ниже ГИ)
Существуют множество различных таблиц определяющих гликемический индекс продуктов, вот одна из них:
Таблица гликемических индексов продуктов позволяет вам принимать правильные решения, выбирая, какие продукты включить в ваш дневной рацион, а какие сознательно исключить.
Принцип простой: чем выше гликемический индекс, тем реже включайте такие продукты в ваш рацион. И наоборот, чем ниже гликемический индекс, тем чаще употребляйте в пищу такие продукты.Однако быстрые углеводы нам тоже пригодятся в таких важных приемах пищи как:
— с утра (после продолжительного сна концентрация глюкозы в крови очень низкая, и ее необходимо восполнить как можно быстрее, что бы не дать организму получать необходимую энергию для жизнедеятельности с помощью аминокислот, путем разрушения мышечных волокон)
— и после тренировки (когда затраты энергии на интенсивный физический труд значительно снижают концентрацию глюкозы в крови, после тренировки идеальный вариант принимать быстрее углеводы, для максимально быстрого восполнения их и препятствию катаболизма)
Сколько употреблять углеводов?
В бодибилдинге и фитнесе углеводы должны составлять не меньше 50% от всех питательных веществ (естественно мы не рассматриваем «сушку» или похудение).
Существует масса причин для того, чтобы нагрузить себя большим количеством углеводов, в особенности если речь идет о цельных, необработанных продуктах. Однако в первую очередь вы должны понимать, что у способности организма накапливать их существует некий предел. Представьте себе бензобак: он может вместить в себя лишь определенное количество литров бензина. Если вы попробуете влить в него больше, лишний неизбежно прольется. Как только запасы углеводов преобразовались в необходимое количество гликогена, печень начинает перерабатывать их излишки в жир, который затем хранится под кожей и в других частях тела.
Объем мышечного гликогена, который вы можете хранить, зависит от степени вашей мышечной массы. Подобно тому, как одни бензобаки бывают больше других, отличаются и мышцы у разных людей. Чем вы мускулистее, тем большее количество гликогена может хранить ваш организм.
Чтобы убедиться в том, что вы получаете правильное количество углеводов — не больше положенного, — подсчитайте свое суточное их потребление по следующей формуле. Для наращивания мышечной массы в сутки вам следует принимать —7г углеводов на килограмм собственного веса (умножьте свой вес в килограммах на 7).
Подняв уровень потребления углеводов до необходимого, вы должны добавить дополнительную силовую нагрузку. Обильное количество углеводов при занятиях бодибилдингом обеспечит вас большей энергией, позволяющей заниматься интенсивнее и дольше и достигать лучших результатов.
Рассчитать свой дневной рацион можно подробней изучив эту статью
Углеводы. Антропология и концепции биологии
Углеводы
Углеводы – это наиболее распространенная в природе группа органических веществ. Основная их функция – энергетическая. Все углеводы содержат гидроксильные группы (—ОН) вместе с альдегидной или кетогруппой. Выделяют три группы углеводов (табл. 2.1).
Наибольшее значение в природе среди моносахаридов имеют пентозы (рибоза, дезоксирибоза, рибулоза) и гексозы (глюкоза, фруктоза, галактоза). Производными моносахаридов являются «сахарные» кислоты (к ним относятся, например, аскорбиновая кислота – витамин С), многоатомные спирты, гликозиды (к ним относятся некоторые антибиотики – эритромицин, стрептомицин, пуромицин и др.), аминосахара. Все их можно рассматривать как моносахара с дополнительной функциональной группой (—СООН, – NH2 и др.).
Среди олигосахаридов наиболее значимы мальтоза (глюкоза + глюкоза), сахароза (глюкоза + фруктоза), лактоза (глюкоза + галактоза), рафиноза (глюкоза + фруктоза + галактоза). Чрезвычайно важна роль гликопротеидов, определяющих сигналы узнавания на клеточном уровне. Нарушения «сигнализации» приводят к многочисленным патологиям, в том числе и к злокачественным новообразованиям.
Таблица 2.1. Классификация углеводов
К важнейшим гомополисахаридам относятся целлюлоза, гликоген, крахмал. Мономерами их является глюкоза, а различия определяются особенностями структуры (линейной или разветвленной).
Гетерополисахариды обычно состоят из повторяющихся дисахаридов. Примерами их могут служить хитин и муреин, выполняющие структурную функцию в клетках грибов, бактерий, членистоногих, а также мукополисахариды – важнейший элемент соединительной ткани животных с разнообразными функциями.
Использование конкретных полисахаридов как структурных и энергетических компонентов клетки является одной из фундаментальных характеристик при делении представителей живой природы на отдельные царства.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
1. Студент создает таблицу для сравнения функции макромолекул, обнаруженных в клетке человека.
Биомолекулы — это органические молекулы, присутствующие в живых организмах, которые помогают клеткам выполнять задачи по поддержанию жизни
1. Данные макромолекулы: Углеводы, липиды, нуклеиновые кислоты и белки
Функции молекул следующие;
a) Углеводы :
Источник энергии для животных и насекомых
Важный промежуточный продукт пищеварения
Механическое обеспечение стабильности клеток
Хранение энергии в виде углеводов
b) Белки представляют собой полимеры аминокислотных остатков неразветвленный
Функции белков включают;
Они являются структурными компонентами
Они действуют как ферменты
Обеспечивают дыхание
Хранение аминокислоты
c) Функция нуклеиновой кислоты заключается в хранении и выражении генетической информации
Для создания биологической информации в клетках
Для кодирования биологической информации
Для хранения биологической информации в клетках
d) Липиды представляют собой гидрофобные органические вещества, состоящие из углеводородной цепи
Функции липидов:
Жирные кислоты — это липид и строительный материал для других липидов
Фосфолипиды — это часть клеточных мембран
Гликолипиды принимают участие в передаче сигналов
2) Молекулы, в первую очередь отвечающие за клеточной энергии , представляют собой аденозин.
5′-фосфат и аденозинтрифосфат АТФ , полученный из
углеводов, таких как глюкоза, и липидов, таких как глицерин, превращается
в промежуточный продукт гликолиза и, следовательно, становится
вовлеченным в клеточную энергию поэтому правильный вариант — вариант B)
B) Углеводы и липиды
Узнайте больше о биомолекулах здесь:
brainly.ru / question / 14693534
Углеводы в рационе: роль качества и количества в хронических заболеваниях
- Дэвид С. Людвиг, профессор1 2 3,
- Франк Б. Ху, профессор3 4,
- Люк Таппи, профессор5,
- Дженни Бранд-Миллер, профессор6
- 1 Центр профилактики ожирения New Balance Foundation, Бостонская детская больница, Бостон, Массачусетс, США
- 2 Департамент педиатрии, Гарвардская медицинская школа, Бостон, Массачусетс, США
- 3 Департамент Nutrition, Harvard TH Chan School of Public Health, Boston, USA
- 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Гарвардская медицинская школа, Бостон
- 5 Департамент физиологии Университета Лозанны , Лозанна, Швейцария.
- 6 Центр Чарльза Перкинса, Школа наук о жизни и окружающей среде, Сиднейский университет, Сидней, Австралия
- Для корреспонденции: D Ludwig david.ludwig {at} childrens.harvard.edu
Дэвид С. Людвиг и его коллеги исследуют связь между различными типами углеводов и здоровьем.
Углеводы — единственный макроэлемент, минимальные требования к которому отсутствуют. Хотя многие группы населения процветали, используя углеводы в качестве основного источника энергии, другие делали это с небольшим количеством углеводосодержащих продуктов, если вообще использовали их в течение большей части года (например, традиционные диеты инуитов, лапландцев и некоторых коренных американцев).12 Если углеводы не нужны для выживания, возникают вопросы о количестве и типе этого макроэлемента, необходимого для оптимального здоровья, долголетия и устойчивости. Этот обзор посвящен этим текущим противоречиям, уделяя особое внимание ожирению, диабету, сердечно-сосудистым заболеваниям, раку и ранней смерти.
Роль потребления углеводов в развитии человека
Большой мозг современного человека требует больших затрат энергии и требует непропорциональной доли пищевой энергии по сравнению с другими приматами.Первые сообщества охотников и собирателей характеризовались большим потреблением не только животной пищи, но и растительной пищи с более высоким содержанием углеводов, чем листья, включая спелые фрукты, мед и, в конечном итоге, приготовленные крахмалистые продукты.34 Более высокая плотность питательных веществ и энергии в этой диете позволяла для развития желудочно-кишечного тракта меньшего размера, компенсируя энергетические потребности мозга.5
В результате избирательного давления, связанного с диетическими изменениями, произошли две основные генные адаптации, влияющие на переваривание углеводов: среднее число копий гена амилазы в слюне (AMY1) увеличилось больше чем в три раза, при значительных различиях между популяциями, связанными с потреблением крахмала6; и сохранение лактазы в зрелом возрасте, развившееся в нескольких географически различных популяциях, облегчая переваривание молочного сахара лактозы.7 После нашего перехода к аграрному образу жизни в период неолита, начавшийся 12000–14000 лет назад, общее потребление углеводов существенно увеличилось, поскольку зерно стало основным продуктом питания, но археологические данные показывают, что также возникли проблемы, связанные с питанием, включая эндемический дефицит питательных веществ, уменьшение среднего роста и кариес зубов. 8910
Связь между типами углеводов и последствиями для здоровья
Углеводы формально определяются как содержащие углерод, водород и кислород в соотношении 1: 2: 1.На практике диетические углеводы включают соединения, которые могут перевариваться или метаболически превращаться непосредственно в глюкозу, или которые подвергаются окислению до пирувата, включая некоторые сахарные спирты (например, сорбитол). Используются несколько систем классификации углеводов, которые в разной степени влияют на состояние здоровья.
Длина цепи
Углеводы можно разделить по степени полимеризации на моносахариды (мономеры), дисахариды, олигосахариды и полисахариды (крахмал).Обычно считается, что длина углеводного полимера определяет скорость переваривания и всасывания и, следовательно, повышение уровня глюкозы в крови после еды. Поэтому людям с диабетом рекомендовалось избегать употребления сахара и уделять особое внимание крахмалистым продуктам.11 Однако исследования, начатые 50 лет назад, не показали значимой связи между длиной углеводной цепи и постпрандиальной гликемией или инсулинемией.1213 Современные крахмалистые продукты, такие как хлеб, картофель и рис, повышают кровообращение. глюкозы и инсулина значительно больше, чем в некоторых продуктах с высоким содержанием сахара (например, цельных фруктах).14 Напротив, некоторые традиционно потребляемые крахмалы (бобовые, цельнозерновые, макаронные изделия, хлеб на закваске длительного брожения) выделяют глюкозу медленнее, потому что крахмал защищен от переваривания пищевой матрицей (желатинизированной) или из-за того, что присутствие органических кислот замедляет опорожнение желудка. .
Гликемический индекс и гликемическая нагрузка
Хотя углеводы являются единственными составляющими пищи, которые непосредственно повышают уровень глюкозы в крови (главный детерминант секреции инсулина), популяционные исследования показывают, что общее количество углеводов в процентах от пищевой энергии менее важно, чем углеводный тип для риска хронических заболеваний.Рафинированные зерна, картофель и сахаросодержащие напитки связаны с повышенным риском, 15 тогда как минимально обработанные зерна, бобовые и цельные фрукты связаны с пониженным риском.16 Это различие можно частично объяснить различиями в том, как определенные углеводы влияют на постпрандиальную гипергликемию и гиперинсулинемию. , которые причинно связаны с развитием диабета 2 типа, ишемической болезни сердца и, возможно, ожирения.17
Были введены два эмпирических показателя для ранжирования продуктов питания в соответствии с их влиянием на уровень глюкозы в крови: гликемический индекс (GI) и гликемическая нагрузка (GL). ) (таблица 1 ) .GI сравнивает продукты на основе стандартизированного количества доступных углеводов. Гликемическая нагрузка (ГИ, умноженная на количество углеводов в типичной порции) позволяет сравнивать гликемический эффект продуктов, приемов пищи и всей диеты как реально потребляемые, и было показано, что это лучший предиктор гликемического ответа, чем количества углеводов, белков и жиров в пище.18 Проспективные обсервационные исследования показали, что более высокий скорректированный по энергии GI или общий GL является независимым фактором риска диабета 2 типа у мужчин и женщин19; сердечно-сосудистая заболеваемость и смертность, включая инсульт, у женщин202122; и определенные типы рака у обоих полов, 2324 хотя некоторые ставят под сомнение силу и последовательность этих результатов.25
Таблица 1
Содержание углеводов и гликемический индекс типичных пищевых продуктов
Клетчатка и резистентный крахмал
Клетчатка или некрахмальный полисахарид — это растительный углевод, который не усваивается ферментами человека. Волокно и резистентный крахмал в той или иной степени служат субстратом для микробной ферментации толстой кишки, что приводит к образованию короткоцепочечных жирных кислот, которые обеспечивают прямой источник энергии для эпителия толстой кишки и влияют на чувствительность печени к инсулину26. не вязкие) и нерастворимые, свойства, влияющие на всасывание в желудочно-кишечном тракте и метаболические эффекты.Вязкие волокна, такие как растительные камеди и полученные из фруктов, бобовых и псиллиума, замедляют пищеварение и снижают постпрандиальную гликемию и абсорбцию холестерина, тогда как нерастворимые волокна (например, из пшеничных отрубей) имеют ограниченное метаболическое действие.
Добавленный и свободный сахар
Добавленные сахара — это сахара, которые добавляются в пищевые продукты во время обработки, производства или приготовления пищи. Новый термин «свободный сахар» также включает сахара, естественно присутствующие в несладких фруктовых соках: в остальном эти два термина взаимозаменяемы.Согласно этому определению, только лактоза, естественно присутствующая в молочных продуктах, и сахара, содержащиеся в клеточной структуре пищевых продуктов (например, цельные фрукты), будут исключены.27
Большинство органов здравоохранения согласны с тем, что чрезмерное потребление добавленных сахаров, и особенно сахаросодержащих напитков, имеет способствовали развитию эпидемии ожирения27. В более качественных проспективных обсервационных исследованиях изменения в потреблении сладких напитков напрямую связаны с изменениями в потреблении энергии28 и массе тела.29 Кроме того, два крупных рандомизированных контролируемых исследования показали, что отказ от сладких напитков снизил массу тела среди подростков в возрасте одного года30 и среди детей младшего возраста в возрасте 18 месяцев.31 В метаанализах исследований взрослых, потребляющих неограниченную диету, связано снижение потребления добавленных сахаров. при умеренном снижении массы тела, в то время как более высокое потребление связано с сопоставимым приростом. Однако изокалорийное замещение сахаров другими углеводами не повлияло на массу тела.32
Потенциальные механизмы, связывающие сахар с увеличением веса, остаются предметом дискуссий.Несколько исследователей подчеркнули потенциальную роль фруктозы. 33343536373839 Фруктоза метаболизируется в основном в кишечнике и печени и в определенных экспериментальных условиях может стимулировать de novo липогенез, воспаление и резистентность к инсулину. Однако актуальность этих результатов для типичных моделей потребления была поставлена под сомнение.4041 Более того, высокое потребление фруктов с относительно высоким содержанием фруктозы связано с хорошим метаболическим здоровьем, что позволяет предположить, что пищевой источник фруктозы также важен.42
Относительный вклад добавленного сахара по сравнению с другими углеводами в эпидемию ожирения остается неизвестным. Действительно, крахмалистые продукты с высоким содержанием GL (без фруктозы) вносят значительно больше калорий в типичную западную диету, чем добавленный сахар.43 В Австралии потребление добавленного сахара и сахаросодержащих напитков постепенно снижалось с 1990-х годов, даже как средний индекс массы тела у взрослых и людей. у детей резко возросло.44
Помимо массы тела, метаанализ рандомизированных исследований показывает, что более высокое потребление добавленных сахаров повышает уровень триглицеридов, общего холестерина, артериального давления и других факторов риска сердечно-сосудистых заболеваний.38454647 Особое беспокойство вызывает неалкогольная жировая болезнь печени, состояние, связанное с ожирением, которое стало серьезной угрозой общественному здоровью. Снижение потребления фруктозы или сахара в нескольких клинических испытаниях привело к снижению внутрипеченочного жира.484950 Однако каждое из этих исследований имеет ограничения по дизайну, такие как отсутствие контрольной группы и затруднение из-за непреднамеренной потери веса. В шестимесячном испытании у людей, потребляющих сахаросодержащие напитки, был более высокий уровень печени и эктопического жира, чем у тех, кто употреблял напитки без добавления сахара, хотя масса тела не различалась в зависимости от группы диеты.47
Основываясь на выводах о том, что «увеличение или уменьшение свободного сахара связано с параллельными изменениями массы тела… независимо от уровня потребления свободных сахаров», в рекомендациях ВОЗ 2015 г. рекомендовалось, чтобы потребление свободных сахаров составляло менее 10%. потребляемой энергии как для взрослых, так и для детей, с потенциальной дополнительной пользой ниже 5% 27. Научный консультативный комитет по питанию в Великобритании рекомендовал верхний предел 5%, отметив потенциальную пользу на этом более низком уровне для здоровья зубов и общего потребления энергии.51 (Современные крахмалистые продукты также могут способствовать переносимости зубов. 52) Диетические рекомендации для американцев на 2015-2020 годы рекомендуют ограничение на добавленный сахар в размере 10% от общей энергии53.
Составные индексы качества
Помимо механизмов, подразумеваемых этими Согласно широким классификационным системам, продукты, содержащие углеводы, могут влиять на здоровье по-разному. Цельные растительные продукты содержат множество соединений с явно полезными (витамины, минералы, антиоксидантные и противовоспалительные фитохимические вещества) или, возможно, неблагоприятными54 (лектины, фитаты) действием.В конечном итоге диету следует рассматривать комплексно, при этом изменения в потреблении одной категории продуктов питания влияют на другие. Характер этих обменов будет определять очевидную полезность конкретных продуктов в популяционных исследованиях. Признавая эту проблему, было предложено несколько показателей качества углеводов (на основе ГИ, клетчатки, цельного: общего потребления зерна и других факторов) и общего качества диеты.
Как продукты, содержащие углеводы, влияют на здоровье?
Зерна
Зерна — семена злаковых трав и аналогичных семейств растений — являются основным продуктом питания и основным источником пищевых углеводов во всем мире.Минимально обработанные цельные зерна сохраняют все три компонента семян. Очищенные зерна обрабатываются для удаления богатых белком и жирами зародышей и богатых клетчаткой отрубей, оставляя только крахмалистый эндосперм. Мета-анализ рандомизированных клинических испытаний показывает, что по сравнению с диетами без них цельнозерновые продукты вызывают небольшое, но значительное снижение холестерина липопротеинов низкой плотности (ЛПНП), общего холестерина и процентного содержания жира в организме; они также улучшают постпрандиальный уровень глюкозы и гомеостаз глюкозы.555657
Проспективные когортные исследования также показали значительную обратную связь между потреблением цельного зерна и заболеваемостью диабетом 2 типа, ишемической болезнью сердца, ишемическим инсультом, общим сердечно-сосудистым заболеванием и некоторыми видами рака, а также риском смерти от всех причин. , большее потребление рафинированного зерна, особенно из белого риса, связано с повышенным риском развития диабета 2 типа. 5963 Целые ядра или крупно размолотые зерна, как правило, имеют более низкий ГИ, чем рафинированные зерна, и содержат большее количество клетчатки и фитохимических веществ с потенциальными противовоспалительными свойствами. и антиоксидантные свойства.
Однако относительная польза для здоровья цельнозерновых и цельнозерновых продуктов по сравнению с другими категориями цельных продуктов с более низким содержанием углеводов (например, орехами, семенами, бобовыми, авокадо, оливками) изучена недостаточно. Кроме того, большинство цельных зерен в обработанных пищевых продуктах не содержат неповрежденных цельнозерновых зерен, а были измельчены до муки с мелкими частицами (таким образом, с более высоким ГИ) с различным количеством повторно включенных отрубей и зародышей. Следовательно, пищевые продукты, помеченные как цельнозерновые, могут не иметь такой же пользы для здоровья, как неповрежденные или минимально обработанные цельнозерновые зерна (ягоды пшеницы, стальной овес, киноа), а некоторые цельнозерновые продукты содержат большое количество добавленного сахара.
Картофель
Картофель, основной овощной продукт в большинстве стран, является еще одним важным источником пищевых углеводов. Хотя в картофеле есть некоторые питательные вещества (такие как витамин С, калий и клетчатка), он содержит преимущественно крахмал с высоким ГИ, который обычно едят.14 В трех группах мужчин и женщин в США повышенное потребление картофеля было связано с большим набором веса64 и более высокий риск диабета 2 типа, даже после корректировки индекса массы тела и других факторов риска диабета.65 В тех же группах более высокое потребление печеного, вареного или пюре и картофеля фри было независимо связано с повышенным риском развития гипертонии.66 Таким образом, влияние картофеля на здоровье больше похоже на воздействие рафинированного зерна, чем у других овощей. .
Бобовые
Бобовые, такие как фасоль, горох и чечевица, например цельнозерновые, улучшают качество питания и улучшают состояние здоровья, если они включены в типичный рацион. Бобовые содержат углеводы с низким ГИ и относительно большое количество белка, клетчатки и других питательных веществ.1467 Метаанализ рандомизированных клинических испытаний выявил значительное снижение общего холестерина и холестерина ЛПНП при диетических вмешательствах, не содержащих соевые бобовые, по сравнению с контрольными диетами.68 Другой метаанализ показал снижение риска сердечно-сосудистых заболеваний на 10% по сравнению с самым высоким и самым низким. категории потребления.69 У населения Коста-Рики увеличение соотношения бобов и белого риса было связано с более низкими кардиометаболическими факторами риска, включая липиды крови и артериальное давление.70
Фрукты
Целые фрукты богаты клетчаткой, витаминами и минералами , и фитохимические вещества и обычно имеют GL от умеренного до низкого.14 Согласно проспективным когортным исследованиям, регулярное потребление фруктов связано с более низким риском диабета 2 типа, сердечно-сосудистых заболеваний, рака и общей смертности. риск диабета, тогда как большее потребление фруктовых соков связано с более высоким риском в трех когортах США.74 По сравнению с цельными фруктами, фруктовые соки, как правило, содержат меньше клетчатки, меньше микроэлементов и более высокий ГИ75, и по этим причинам классифицируются цельные фрукты фрукты и соки вместе в диетических рекомендациях вызывает споры.
Каковы метаболические эффекты углеводов у населения?
Жители мест с очень долголетием традиционно придерживались высокоуглеводной диеты, хотя связанные с этим факторы здорового образа жизни могут затруднять причинную интерпретацию.76 Напротив, исследование PURE, проведенное в 18 странах, показало, что более высокое потребление углеводов было связано с повышенной смертностью, но здесь также возможно смешение (например, многие люди в странах с низким уровнем дохода питаются преимущественно крахмалистыми продуктами, такими как белый рис).7778 В долгосрочных больших когортах, изучаемых в США, общее потребление углеводов также связано с более высокой смертностью, хотя тип диетического жира значительно снижает риск.79 Аналогичным образом, замена насыщенных жиров углеводами с низким ГИ связана с более низким риском инфаркта миокарда. , в то время как замена углеводов с высоким ГИ связана с более высоким риском. 80
Клинические испытания показали, что низкоуглеводные диеты в краткосрочной перспективе приводят к большей потере веса, чем диеты с низким содержанием жиров, но эта разница со временем уменьшается из-за плохого соблюдения режима в долгосрочном плане.8182838485 Недавнее исследование DIETFITs сообщило о незначительном преимуществе здоровой диеты с низким содержанием углеводов по сравнению со здоровой диетой с низким содержанием жиров, но обеим группам было рекомендовано ограничить потребление сахара, рафинированного зерна и обработанных пищевых продуктов в целом.86 Таким образом, данные свидетельствуют о том, что тип углеводов может имеют большее влияние на результаты для здоровья, чем общая сумма для населения в целом. Однако определенные группы могут по-разному реагировать на количество и качество углеводов.
Инсулинорезистентность, метаболический синдром и диабет
Метаболический синдром (характеризующийся центральным ожирением, гипертонией, дислипидемией, гипергликемией и хроническим воспалением) вносит важный вклад в риск диабета и сердечно-сосудистых заболеваний во всем мире.Основная причина этого синдрома — инсулинорезистентность и связанное с этим повышение уровня циркулирующего инсулина. Поскольку инсулинорезистентность отражает снижение способности стимулировать усвоение глюкозы органами-мишенями, некоторые исследователи предложили диету с пониженным содержанием углеводов как часть лечения.87 Наблюдательные и экспериментальные данные предполагают, что люди с низким уровнем физической активности или ожирением (основные факторы инсулинорезистентности) ) могут быть особенно чувствительны к неблагоприятным метаболическим эффектам диет с высоким содержанием сахара или GL8889, что, возможно, объясняет, как азиатские фермерские сообщества могут поддерживать низкий уровень ожирения и сердечно-сосудистых заболеваний, используя диеты на основе белого риса.
Людям с диабетом может особенно помочь сокращение потребления продуктов, повышающих уровень глюкозы в крови после приема пищи. Предварительные данные свидетельствуют об улучшении гликемического контроля, снижении уровня триглицеридов и других метаболических преимуществах от низкоуглеводных диет или диет с низким ГИ при диабете как типа 190, так и типа 2, 91 хотя долгосрочные данные об эффективности и безопасности отсутствуют.
Ранняя секреция инсулина
Ранняя секреция инсулина отражает тенденцию β-клеток поджелудочной железы быстро высвобождать инсулин после приема углеводов.Этот клинический показатель, отличный от инсулинорезистентности, можно оценить как концентрацию инсулина в крови через 30 минут стандартного перорального теста на толерантность к глюкозе (инсулин 30) .92 Согласно углеводно-инсулиновой модели ожирения, люди с высокой секрецией инсулина будут особенно подвержены увеличению веса на диете с высоким содержанием ГК, гипотеза, подтвержденная лабораторными, наблюдательными и клиническими исследованиями. 939495 Высокое действие инсулина в жировой ткани может иметь анаболический эффект, который способствует отложению жира, что приводит к усилению голода и снижению расхода энергии.Недавнее менделевское рандомизированное исследование показало, что результаты генетически детерминированного инсулина 30 сильно предсказывают индекс массы тела.96 Однако ни инсулин 30, ни генетический риск не изменили реакцию на диету в DIETFITS, хотя GL был заметно низким в обеих диетических группах этого исследования. 86
Амилаза слюны
Число диплоидных копий гена амилазы слюны (AMY1) широко варьируется, влияя на концентрацию белка амилазы в слюне. Люди с более высоким числом копий имеют более высокую постпрандиальную гликемию после употребления крахмалистых (но не сладких) продуктов.97 Высокое количество копий AMY1 могло обеспечить преимущество в выживаемости, но его отношение к ожирению и метаболическим заболеваниям сегодня остается неясным.9899100 В недавнем исследовании сообщалось о взаимодействии между диетой и генами, так что самый низкий индекс массы тела наблюдался среди людей с высоким потреблением крахмала и низкое количество копий AMY1 (что отражает низкую генетическую способность переваривать крахмал) .99
Выводы
Хотя человеческое население процветало на диетах с широко варьирующимся соотношением макроэлементов, недавний приток быстро усваиваемых углеводов с высоким ГИ в развитых странах способствовал эпидемии ожирения и кардиометаболических заболеваний.Более того, традиционные диеты на основе крахмала в некоторых развивающихся странах, вероятно, способствовали повышению риска хронических заболеваний, со снижением физической активности и более высоким индексом массы тела, связанным с быстрой урбанизацией.
Однако качество углеводов, по-видимому, играет более важную роль в здоровье населения, чем количество углеводов. Можно привести веские доводы в пользу того, что потребление зерна с высоким ГЛ, картофельных продуктов и добавленных сахаров (особенно в напитках) причинно связано с ожирением, диабетом, сердечно-сосудистыми заболеваниями и некоторыми видами рака; тогда как некрахмалистые овощи, цельные фрукты, бобовые и цельнозерновые зерна выглядят защитными.Тем не менее, метаболические эффекты общих углеводов и углеводов с высоким ГИ могут различаться у разных людей в зависимости от степени инсулинорезистентности, непереносимости глюкозы или других наследственных или приобретенных биологических предрасположенностей.
Несмотря на много новых знаний о метаболических эффектах углеводов и области широкого консенсуса, многие споры остаются. Большинство долгосрочных данных получают из наблюдательных исследований, на которые могут повлиять смешивающие и другие методологические проблемы. Большинство рандомизированных контролируемых исследований являются короткими, основаны на косвенных показателях, не имеют слепого анализа, не контролируют интенсивность лечения между диетическими группами и имеют ограниченное соблюдение.Дополнительные соответствующие соображения в исследованиях эффективности включают поведенческие и экологические факторы (например, наличие и доступность продуктов питания), влияющие на соблюдение требований. Разрешение этих противоречий (кратко изложено во вставке 1) потребует механистически ориентированных исследований кормления и долгосрочных клинических испытаний, проспективных наблюдательных исследований и изучения экономических и экологических воздействий.
Вставка 1
Споры об углеводах
-
Поможет ли сокращение общего потребления углеводов (в настоящее время обычно 45-65% от общей энергии) контролировать массу тела у населения в целом и у восприимчивых подгрупп?
-
Какова роль низкоуглеводной диеты в профилактике и лечении метаболического синдрома и диабета 2 типа, а также в управлении диабетом 1 типа?
-
Обеспечивает ли кетоз, вызванный серьезным ограничением углеводов, какие-либо уникальные метаболические преимущества, и если да, то в каких клинических условиях эта диета была бы рекомендована?
-
До какого уровня следует ограничивать добавленные (или свободные) сахара для оптимального здоровья человека и населения в целом?
-
Принесет ли замена фруктозы в добавленных сахаров подсластители на основе глюкозы метаболическую пользу или вред?
-
Принесет ли замена свободных сахаров плохо усваиваемыми сахарами, сахарными спиртами или искусственными подсластителями пользу или вред для здоровья (например, неожиданное воздействие на микробиом)?
-
Принесет ли повышенное потребление резистентного крахмала пользу для здоровья?
-
Какое влияние на здоровье оказывает замена цельнозерновых продуктов другими цельнозерновыми продуктами с высоким содержанием углеводов (фрукты, бобовые) или с высоким содержанием жира (орехи, семена, авокадо)?
-
Каковы долгосрочные эффекты различных типов углеводов на популяционный риск рака, нейродегенеративных заболеваний и когнитивных функций?
-
Какие продукты на основе углеводов обеспечат оптимальное сочетание преимуществ для здоровья, экологической устойчивости, стоимости и приемлемости для общества?
ВОЗВРАТ К ТЕКСТУ
Ключевые сообщения
-
Человеческое население процветало на диетах с сильно различающимся содержанием углеводов
-
Качество углеводов имеет большое влияние на риск многочисленных хронических заболеваний
-
Замена переработанных углеводов необработанными или здоровые жиры принесут большую пользу общественному здравоохранению
-
Польза от замены фруктозосодержащих сахаров другими обработанными углеводами неясна
-
Людям с тяжелой инсулинорезистентностью или диабетом может помочь сокращение общего потребления углеводов
Сноски
-
Соавторы и источники: Все авторы внесли свой вклад в первый черновик рукописи и представили критические исправления.DSL является гарантом. Мы благодарим Фиону Аткинсон за помощь в разработке таблицы 1.
-
Конкурирующие интересы: мы прочитали и поняли политику BMJ в отношении декларации интересов и заявляем следующие интересы: DSL получила исследовательские гранты (для Бостонской детской больницы) от национальных институтов из Инициативы по науке о здоровье и питании, Фонда Лауры и Джона Арнольдов и других благотворительных организаций, не связанных с пищевой промышленностью; и получил гонорары за книги по ожирению и питанию, рекомендующие диету с низким гликемическим индексом.FBH получил исследовательскую поддержку от Комиссии по ореху Калифорнии и плату за лекции от Metagenics. LT получил гранты (для Университета Лозанны) от Швейцарского национального научного фонда от Швейцарского федерального бюро по спорту и исследовательскую поддержку от Sorematec Italy (для Hôpital Intercantonal de la Broye) для клинических испытаний, связанных с физической активностью в лечении пациентов. при метаболическом синдроме; и получил гонорары от Gatorade Sport Science Institute, Soremartec Italy и Nestlé SA.JBM получила исследовательские гранты от Австралийского национального совета по здравоохранению и медицинским исследованиям, Европейского союза, Фонда гликемического индекса; и получил гонорары за книги по питанию, рекомендующие диету с низким гликемическим индексом. Она курирует службу тестирования гликемического индекса в Сиднейском университете и является президентом и неисполнительным директором Фонда гликемического индекса.
-
Провенанс и экспертная оценка: Введен в эксплуатацию; внешняя экспертная оценка.
-
Эта статья является одной из серии, заказанной BMJ .Плата за открытый доступ к серии финансировалась Swiss Re, которая не участвовала в вводе в эксплуатацию или экспертной оценке статей. BMJ благодарит консультантов серии, Ниту Форухи и Дариуша Мозаффариан, за ценные советы и рекомендации по выбору тем в серии.
Это статья в открытом доступе, распространяемая в соответствии с некоммерческой лицензией Creative Commons Attribution (CC BY-NC 4.0), которая позволяет другим распространять, ремикшировать, адаптировать, использовать эту работу в некоммерческих целях и лицензировать свои производные работы на разных условиях при условии, что оригинальная работа правильно процитирована и используется в некоммерческих целях.См. Http://creativecommons.org/licenses/by-nc/4.0/.
Разница между углеводами и жирами (со сравнительной таблицей)
Углеводы растворимы в воде и являются наиболее распространенным пищевым источником энергии для всех живых организмов, тогда как жиров нерастворимы в воде , но растворимы в спирте, эфире, и т. д. Жиры также считаются основным источником энергии.
Нашему организму требуется достаточно энергии для «работы», которую мы получаем через макромолекулы, такие как углеводы и жиры.Оба они обеспечивают организм энергией и являются макроэлементами, что означает, что углеводы и жиры входят в тройку основных источников энергии для организма.
Углеводы — это простейшая форма сахаров, которые всасываются в тонком кишечнике, а затем печень преобразует их в глюкозу (форму энергии) и отправляет обратно в кровоток для обеспечения энергией для выполнения различных функций; Жиры и масла, широко присутствующие в растениях и животных, представляют собой сложные эфиры глицерина, который служит резервом топлива для организма.
Содержание: углеводы против жиров
- Сравнительная таблица
- Определение и их виды
- Ключевые отличия
- Заключение
Сравнительная таблица
Основа для сравнения | Углеводы | Жиры |
---|---|---|
Состав | Углеводы — это органические молекулы, широко встречающиеся на Земле. Судя по названию, они состоят из углерода, водорода и кислорода. | Жиры также содержат карбоновые кислоты с углеводородными боковыми цепями. Это простейшая форма липидов. |
Растворимость | Углеводы растворимы в воде. | Жиры не растворимы в воде, но растворимы в неорганических растворителях, таких как спирт, этанол. |
Источники | Основным источником углеводов является столовый сахар, картофель, хлеб, фруктовые соки и т. Д. | Масла в овощах, семенах, орехах и жиры животного происхождения являются основным источником. |
Там, где они необходимы | Углеводы необходимы для обеспечения организма энергией или топливом сразу после приема пищи. | Жир необходим для роста нашего тела, основная задача жира — накапливать энергию и усваивать необходимые витамины . |
Требуемое количество | По крайней мере 45-65 процентов углеводов должны быть взяты из процента потребляемых калорий. | Там должно быть около 20-35 процентов потребляемых жиров. |
калорий | Углеводы содержат 4 калории на грамм. | Жир содержит 9 калорий на грамм. |
Функции | После приема пищи углеводы превращаются в глюкозу, которая в дальнейшем используется в качестве энергии для процесса метаболизма. | Жиры помогают усваивать такие витамины, как A, D, E, K. |
Клетчатка (неперевариваемая) — это форма углеводов, которая помогает поддерживать уровень глюкозы в крови, уровень холестерина и, главным образом, выводит отходы из организма. | Помогает регулировать выработку гормонов, защищает клетки, органы и помогает поддерживать температуру тела. |
Определение углеводов
Это самая важная из всех макромолекул. Углевод — это органическая молекула, имеющая эмпирическую формулу (CH 2 O) n, , которая представляет собой углерод, водород и кислород в качестве основных компонентов. Но некоторые могут также содержать азот, фосфат или серу.
Их функция очень важна, так как помимо обеспечения организма энергией, углеводы выполняют около других функций , например, они служат в качестве структурных и защитных элементов для клеточных стенок растений и бактерий, работая как экзоскелет (твердое покрытие) для членистоногих. , насекомые, лобстеры (экзоскелет состоит из хитина, который является разновидностью полисахарида).
Виды углеводов
Углеводы можно разделить на простые и сложные сахара. Простые сахара содержат одну или две единицы сахаров, а сложные — три или более. Исходя из этого, они делятся на три типа:
- Моносахарид
- Олигосахарид
- Полисахарид
1. Моносахарид: Это простейшая форма углевода (сахара), поскольку моно означает «один», а сахарид означает «сахар», имеющую общую формулу как (CH 2 O) n.
По количеству присутствующих атомов углерода они классифицируются как триозы (3C), тетрозы (4C), пентозы (5C), гексозы (6C) и гептозы (7C). Наряду с присутствующими функциональными группами (альдозами и кетозами) они называются альдогексоза (глюкоза) и кетогексоза (фруктоза).
2. Олигосахарид: Олиго означает «немного», они содержат небольшие единицы моносахаридов в диапазоне от 2 до 10, связанных гликозидной связью. Олигосахариды также относятся к простым сахарам.
Дисахариды — наиболее распространенная форма олигосахаридов, содержащая две единицы моносахаридов.Мальтоза, лактоза, сахароза и т. Д. Являются примерами дисахаридов.
3. Полисахариды: Поскольку поли означает «много», поэтому молекулы, имеющие 10 или более повторяющихся единиц моносахарида, связанных гликозидной связью, относятся к этой категории. Считается, что полисахариды представляют собой сложный сахар. Крахмал, гликоген, целлюлоза — несколько примеров этого.
Они бывают двух типов: гомополисахарид и гетерополисахарид.
- Гомополисахарид состоит из одинаковых единиц молекулы сахара, связанных гликозидными связями.Пример — целлюлоза.
- Гетерополисахарид состоит из различных типов сахарных звеньев. Гепарин — гетерополисахарид.
Определение жиров
Считается, что жиры представляют собой простейшую форму липидов, содержащих карбоновые кислоты с боковой цепью углеводорода. Химическое название жиров и масел «Триглицерины» , они относятся к производным углеводородов и сложных эфиров жирных кислот с глицерином.
Жиры и масла — это не полимеры, а небольшие молекулы, нерастворимые в воде, но растворимые в органических растворителях, таких как спирт, эфир и т. Д.Основная функция жира — запасать энергию.
Типы жиров
Жиры подразделяются на 2 типа: —
- Насыщенные жирные кислоты
- Ненасыщенные жирные кислоты
1. Насыщенные жирные кислоты: Они не имеют двойной связи между атомами углерода. Обычно они твердые при комнатной температуре, их можно найти в красном мясе, молочных продуктах и пальмах, а также в кокосовом масле. Примеры: пальмитиновая кислота, стеариновая кислота и т. Д.
2. Ненасыщенные жирные кислоты: Они имеют двойные связи между атомами углерода.Они содержатся в оливковом масле, арахисовом масле, грецких орехах и т. Д. Олеиновая кислота, линолевая кислота и т. Д. Являются примерами ненасыщенных жирных кислот.
Жирные кислоты, имеющие только одну двойную связь, называются мононенасыщенными (МНЖК), а кислоты, имеющие две или более двойных связей, называются полиненасыщенными жирными кислотами (ПНЖК). Они жидкие при комнатной температуре и, кажется, снижают риск сердечных заболеваний.
Ключевые различия между углеводами и жирами
- Хотя и углеводы, и жиры являются источниками энергии, ключевое отличие состоит в том, что углеводы обеспечивают мгновенной энергии после приема пищи, но жиры помогают в хранении энергии , помимо этого жиры обеспечивают защиту жизненно важных органов, клеток. мембраны, а также помогает в регулировании гормонов.
- Углеводы можно классифицировать по количеству содержащихся в них сахарных единиц, тогда как жиры классифицируются по связям, одинарным или двойным.
- Углеводы — это предшественники многих органических соединений, таких как жиры и аминокислоты; Жиры служат источником жирорастворимых витаминов (A, D, E и K).
- Углеводы в форме гликопротеинов и гликолипидов помогают в росте клеток, адгезии и других функциях. Жиры также помогают поддерживать надлежащую температуру тела.
Заключение
Углеводы и жиры играют жизненно важную роль в обеспечении энергией; оба они имеют одинаковое значение в природе. Однако говорят, что мы не должны потреблять много жира, но он не менее важен по сравнению с углеводами, потому что, помимо обеспечения энергии, жиры также помогают в нормальном росте тела.
Эти макроэлементы не могут вырабатываться нашим организмом самостоятельно. Следовательно, они должны быть получены с помощью хорошей и здоровой диеты, богатой углеводами и жирами, такими как фрукты, овощи, рис, семена и т. Д.
15.3 Процессы пищеварительной системы — Концепции биологии — 1-е канадское издание
Глава 15. Питание животных и пищеварительная система
Цели обучения
К концу этого раздела вы сможете:
- Опишите процесс пищеварения
- Подробно описать этапы пищеварения и абсорбции
- Определить исключение
- Объясните роль тонкого и толстого кишечника в абсорбции.
Получение питательных веществ и энергии из пищи — это многоступенчатый процесс.Для настоящих животных первым шагом является прием пищи. Затем следует переваривание, всасывание и выведение. В следующих разделах мы подробно обсудим каждый из этих шагов.
Большие молекулы, содержащиеся в неповрежденной пище, не могут проходить через клеточные мембраны. Пища должна быть разбита на более мелкие частицы, чтобы животные могли использовать питательные вещества и органические молекулы. Первым шагом в этом процессе является прием . Проглатывание — это процесс приема пищи через рот.У позвоночных зубы, слюна и язык играют важную роль в жевании (приготовлении пищи в виде комков). Пока пища механически расщепляется, ферменты слюны также начинают химически обрабатывать пищу. Совместное действие этих процессов превращает пищу из крупных частиц в мягкую массу, которую можно проглотить и которая может перемещаться по пищеводу.
Пищеварение — это механическое и химическое разложение пищи на мелкие органические фрагменты.Важно разбить макромолекулы на более мелкие фрагменты, подходящие по размеру для всасывания через пищеварительный эпителий. Большие сложные молекулы белков, полисахаридов и липидов должны быть уменьшены до более простых частиц, таких как простой сахар, прежде чем они будут поглощены пищеварительными эпителиальными клетками. Различные органы играют определенную роль в процессе пищеварения. Рацион животных требует углеводов, белков и жиров, а также витаминов и неорганических компонентов для баланса питания.Как усваивается каждый из этих компонентов, обсуждается в следующих разделах.
Переваривание углеводов начинается во рту. Фермент слюны амилаза начинает расщепление пищевого крахмала на мальтозу, дисахарид. Когда пища проходит через пищевод в желудок, переваривание углеводов не происходит. Пищевод не производит пищеварительных ферментов, но производит слизь для смазки. Кислая среда в желудке останавливает действие фермента амилазы.
Следующий этап переваривания углеводов происходит в двенадцатиперстной кишке. Напомним, химус из желудка попадает в двенадцатиперстную кишку и смешивается с пищеварительным секретом поджелудочной железы, печени и желчного пузыря. Соки поджелудочной железы также содержат амилазу, которая продолжает расщепление крахмала и гликогена на мальтозу, дисахарид. Дисахариды расщепляются на моносахариды ферментами, называемыми мальтазами
, сукразы и лактазы , которые также присутствуют в щеточной кайме стенки тонкой кишки.Мальтаза расщепляет мальтозу на глюкозу. Другие дисахариды, такие как сахароза и лактоза, расщепляются сахарозой и лактазой соответственно. Сахараза расщепляет сахарозу (или «столовый сахар») на глюкозу и фруктозу, а лактаза расщепляет лактозу (или «молочный сахар») на глюкозу и галактозу. Произведенные таким образом моносахариды (глюкоза) абсорбируются и затем могут использоваться в метаболических путях для использования энергии. Моносахариды транспортируются через эпителий кишечника в кровоток для транспортировки к различным клеткам организма.Этапы переваривания углеводов представлены на рис. 15.16 и в таблице 15.5.
Рисунок 15.16. Переваривание углеводов осуществляется несколькими ферментами. Крахмал и гликоген расщепляются на глюкозу амилазой и мальтазой. Сахароза (столовый сахар) и лактоза (молочный сахар) расщепляются сахарозой и лактазой соответственно.
Фермент | Произведено | Место действия | Субстрат, действующий на | Готовые продукты |
---|---|---|---|---|
Амилаза слюны | Слюнные железы | Рот | Полисахариды (крахмал) | Дисахариды (мальтоза), олигосахариды |
Панкреатическая амилаза | Поджелудочная железа | Тонкая кишка | Полисахариды (крахмал) | Дисахариды (мальтоза), моносахариды |
Олигосахаридазы | Выстилка кишечника; мембрана щеточной каймы | Тонкая кишка | Дисахариды | Моносахариды (например,г., глюкоза, фруктоза, галактоза) |
Большая часть белков переваривается в желудке. Фермент пепсин играет важную роль в переваривании белков, расщепляя интактный белок на пептиды, которые представляют собой короткие цепи из четырех-девяти аминокислот. В двенадцатиперстной кишке другие ферменты — трипсин , эластаза и химотрипсин — действуют на пептиды, превращая их в более мелкие пептиды. Трипсинэластаза, карбоксипептидаза и химотрипсин вырабатываются поджелудочной железой и попадают в двенадцатиперстную кишку, где действуют на химус.Дальнейшему расщеплению пептидов на отдельные аминокислоты помогают ферменты, называемые пептидазами (те, которые расщепляют пептиды). В частности, карбоксипептидаза, дипептидаза и аминопептидаза играют важную роль в восстановлении пептидов до свободных аминокислот. Аминокислоты всасываются в кровоток через тонкий кишечник. Этапы переваривания белка представлены на рис. 15.17 и в таблице 15.6.
Рис. 15.17.
Переваривание белка — это многоступенчатый процесс, который начинается в желудке и продолжается в кишечнике.
Фермент | Произведено | Место действия | Субстрат, действующий на | Готовые продукты |
---|---|---|---|---|
Пепсин | Клетки главного желудка | Желудок | Белки | Пептиды |
|
Поджелудочная железа | Тонкая кишка | Белки | Пептиды |
Карбоксипептидаза | Поджелудочная железа | Тонкая кишка | Пептиды | Аминокислоты и пептиды |
|
Выстилка кишечника | Тонкая кишка | Пептиды | Аминокислоты |
Переваривание липидов начинается в желудке с помощью липазы языка и липазы желудка.Однако основная часть переваривания липидов происходит в тонком кишечнике за счет липазы поджелудочной железы. Когда химус попадает в двенадцатиперстную кишку, гормональные реакции вызывают выброс желчи, которая вырабатывается в печени и хранится в желчном пузыре. Желчь способствует перевариванию липидов, в первую очередь триглицеридов, путем эмульгирования. Эмульгирование — это процесс, при котором большие липидные глобулы разбиваются на несколько маленьких липидных глобул. Эти маленькие глобулы более широко распространены в химусе, чем образуют большие агрегаты.Липиды — это гидрофобные вещества: в присутствии воды они будут агрегироваться с образованием глобул, чтобы минимизировать воздействие воды. Желчь содержит соли желчных кислот, которые являются амфипатическими, что означает, что они содержат гидрофобные и гидрофильные части. Таким образом, гидрофильная сторона солей желчных кислот может взаимодействовать с водой с одной стороны, а гидрофобная сторона — с липидами с другой. Таким образом, соли желчных кислот эмульгируют большие липидные глобулы в маленькие липидные глобулы.
Почему эмульгирование важно для переваривания липидов? Сок поджелудочной железы содержит ферменты, называемые липазами (ферменты, расщепляющие липиды).Если липид в химусе агрегируется в большие глобулы, очень небольшая площадь поверхности липидов доступна для действия липаз, что приводит к неполному перевариванию липидов. Образуя эмульсию, соли желчных кислот многократно увеличивают доступную площадь поверхности липидов. Липазы поджелудочной железы могут более эффективно воздействовать на липиды и переваривать их, как показано на рисунке 15.18. Липазы расщепляют липиды на жирные кислоты и глицериды. Эти молекулы могут проходить через плазматическую мембрану клетки и попадать в эпителиальные клетки слизистой оболочки кишечника.Соли желчных кислот окружают длинноцепочечные жирные кислоты и моноглицериды, образуя крошечные сферы, называемые мицеллами. Мицеллы перемещаются в щеточную кайму абсорбирующих клеток тонкой кишки, где длинноцепочечные жирные кислоты и моноглицериды диффундируют из мицелл в абсорбирующие клетки, оставляя мицеллы в химусе. Длинноцепочечные жирные кислоты и моноглицериды рекомбинируют в абсорбирующих клетках с образованием триглицеридов, которые объединяются в глобулы и покрываются белками. Эти большие сферы называются хиломикронов .Хиломикроны содержат триглицериды, холестерин и другие липиды и имеют белки на своей поверхности. Поверхность также состоит из гидрофильных фосфатных «головок» фосфолипидов. Вместе они позволяют хиломикрону перемещаться в водной среде, не подвергая липиды воздействию воды. Хиломикроны покидают абсорбирующие клетки посредством экзоцитоза. Хиломикроны попадают в лимфатические сосуды, а затем попадают в кровь по подключичной вене.
Рисунок 15.18.
Липиды перевариваются и всасываются в тонком кишечнике.
Витамины могут быть водорастворимыми или жирорастворимыми. Жирорастворимые витамины всасываются так же, как и липиды. Важно потреблять некоторое количество пищевых липидов, чтобы способствовать усвоению жирорастворимых витаминов. Водорастворимые витамины могут напрямую всасываться в кровоток из кишечника.
Концепция в действии
На этом веб-сайте есть обзор переваривания белков, жиров и углеводов.
Рисунок 15.19. Механическое и химическое переваривание пищи происходит в несколько этапов, начиная со рта и заканчивая прямой кишкой.
Какое из следующих утверждений о процессах пищеварения верно?
- Амилаза, мальтаза и лактаза во рту переваривают углеводы.
- Трипсин и липаза в желудке переваривают белок.
- Желчь эмульгирует липиды тонкого кишечника.
- Пища не всасывается до тонкого кишечника.
Заключительный этап пищеварения — удаление непереваренных пищевых продуктов и продуктов жизнедеятельности. Непереваренный пищевой материал попадает в толстую кишку, где реабсорбируется большая часть воды.Напомним, что толстая кишка также является домом для микрофлоры, называемой «кишечной флорой», которая помогает процессу пищеварения. Полутвердые отходы перемещаются по толстой кишке за счет перистальтических движений мышц и хранятся в прямой кишке. По мере того, как прямая кишка расширяется в ответ на накопление фекалий, она запускает нейронные сигналы, необходимые для создания позывов к устранению. Твердые отходы выводятся через задний проход с помощью перистальтических движений прямой кишки.
Общие проблемы с устранением
Диарея и запор — одни из наиболее частых проблем со здоровьем, влияющих на пищеварение.Запор — это состояние, при котором кал затвердевает из-за удаления избытка воды в толстой кишке. Напротив, если из фекалий не удаляется достаточное количество воды, это приводит к диарее. Многие бактерии, в том числе вызывающие холеру, влияют на белки, участвующие в реабсорбции воды в толстой кишке, и вызывают чрезмерную диарею.
Рвота или рвота — это устранение пищи путем насильственного изгнания через рот. Часто это реакция на раздражитель, поражающий пищеварительный тракт, включая, помимо прочего, вирусы, бактерии, эмоции, взгляды и пищевое отравление.Это насильственное вытеснение пищи происходит из-за сильных сокращений, производимых мышцами желудка. Процесс рвоты регулируется мозговым веществом.
Резюме
Рацион животного должен быть сбалансированным и удовлетворять потребности организма. Углеводы, белки и жиры — основные компоненты пищи. Некоторые важные питательные вещества необходимы для функционирования клеток, но не могут вырабатываться организмом животного. К ним относятся витамины, минералы, некоторые жирные кислоты и некоторые аминокислоты. Прием пищи в количестве, превышающем необходимое, сохраняется в виде гликогена в клетках печени и мышц, а также в жировых клетках.Избыточное накопление жира может привести к ожирению и серьезным проблемам со здоровьем. АТФ — это энергетическая валюта клетки, получаемая посредством метаболических путей. Избыточные углеводы и энергия хранятся в организме в виде гликогена.
Упражнения
- Где происходит большая часть переваривания белков?
- желудок
- двенадцатиперстная кишка
- рот
- тощая кишка
- Липазы — это ферменты, которые расщепляют ________.
- дисахариды
- липидов
- белков
- целлюлоза
- Объясните, почему некоторые пищевые липиды являются необходимой частью сбалансированной диеты.
ответы
- А
- B
- Липиды придают пище аромат и способствуют ощущению сытости или насыщения. Жирная пища — источник высокой энергии; один грамм липидов содержит девять калорий. Липиды также необходимы в диете, чтобы способствовать усвоению жирорастворимых витаминов и для производства жирорастворимых гормонов.
Глоссарий
аминопептидаза: протеаза, расщепляющая пептиды до отдельных аминокислот; секретируется щеточной каймой тонкой кишки
анус: точка выхода отходов
желчь: пищеварительный сок, вырабатываемый печенью; важен для переваривания липидов
болюс: масса пищи в результате жевания и смачивания слюной
карбоксипептидаза: протеаза, расщепляющая пептиды до отдельных аминокислот; секретируется щеточной каймой тонкой кишки
хиломикрон: маленькая липидная глобула
химус: смесь частично переваренной пищи и желудочного сока
химотрипсин: протеаза поджелудочной железы
пищеварение: механическое и химическое расщепление пищи на небольшие органические фрагменты
дипептидаза: протеаза, расщепляющая пептиды до отдельных аминокислот; секретируется щеточной каймой тонкой кишки
двенадцатиперстной кишки: первая часть тонкой кишки, где происходит большая часть переваривания углеводов и жиров
эластаза: протеаза поджелудочной железы
пищевод: трубчатый орган, соединяющий рот с полостью рта желудок
необходимое питательное вещество: питательное вещество, которое не может быть синтезировано организмом; она должна быть получена из пищи
желчный пузырь: орган, хранящий и концентрирующий желчь
прием внутрь: прием пищи
тощая кишка: вторая часть тонкой кишки
лактаза: фермент, расщепляющий лактозу на глюкозу и галактоза
толстый кишечник: орган пищеварительной системы, реабсорбирующий воду из непереваренных материалов и перерабатывающий отходы
липаза: фермент, химически расщепляющий липиды
печень: орган, вырабатывающий желчь для пищеварения и обрабатывающий витамины и липиды
мальтаза: фермент, расщепляющий мальтозу на глюкозу
минерал: неорганическая элементарная молекула, которая выполняет важные функции в организме
поджелудочная железа: железа, выделяющая пищеварительные соки
пепсин: фермент, находящийся в желудке, основная роль которого переваривание белков
прямая кишка: область тела, где кал хранится до выведения
тонкий кишечник: орган, в котором завершено переваривание белков, жиров и углеводов
желудок: мешкообразный орган, содержащий кислые пищеварительные соки
сахароза: фермент, расщепляющий сахарозу на глюкозу и фруктозу
трипсин: протеаза поджелудочной железы, расщепляющая белок
витамин: органическое вещество, необходимое в небольших количествах для поддержания жизни
углеводов | Биология 171
Стехиометрическая формула (CH 2 O) n , где n — количество атомов углерода в молекуле, представляющих углеводы.Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Эта формула также объясняет происхождение термина «углевод»: компоненты — это углерод («углевод») и компоненты воды (отсюда «гидрат»). Ученые классифицируют углеводы на три подтипа: моносахариды, дисахариды и полисахариды.
Моносахариды
Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза.В моносахаридах количество атомов углерода обычно составляет от трех до семи. Большинство названий моносахаридов оканчиваются суффиксом -ose. Если сахар имеет альдегидную группу (функциональная группа со структурой R-CHO), это альдоза, а если у него есть кетонная группа (функциональная группа со структурой RC (= O) R ‘), это кетоза. В зависимости от количества атомов углерода в сахаре они могут быть триозами (три атома углерода), пентозами (пятью атомами углерода) и / или гексозами (шестью атомами углерода). (Рисунок) иллюстрирует моносахариды.
Ученые классифицируют моносахариды на основе положения их карбонильной группы и количества атомов углерода в основной цепи. Альдозы имеют карбонильную группу (обозначена зеленым цветом) на конце углеродной цепи, а кетозы имеют карбонильную группу в середине углеродной цепи. Триозы, пентозы и гексозы имеют трех-, пяти- и шестиуглеродные скелеты соответственно.
Химическая формула глюкозы: C 6 H 12 O 6 .У человека глюкоза — важный источник энергии. Во время клеточного дыхания из глюкозы выделяется энергия, и эта энергия помогает вырабатывать аденозинтрифосфат (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду, а глюкоза, в свою очередь, обеспечивает потребности растений в энергии. Люди и другие животные, которые питаются растениями, часто хранят избыток глюкозы в виде катаболизированного (клеточное разрушение более крупных молекул) крахмала.
Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится в сахарозе, во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и являются изомерами) из-за разного расположения функциональных групп вокруг асимметричного углерода. . Все эти моносахариды имеют более одного асимметричного углерода ((рисунок)).
Art Connection
Глюкоза, галактоза и фруктоза — это гексозы. Они являются структурными изомерами, то есть имеют одинаковую химическую формулу (C 6 H 12 O 6 ), но другое расположение атомов.
Что это за сахара, альдоза или кетоза?
Глюкоза, галактоза и фруктоза представляют собой изомерные моносахариды (гексозы), что означает, что они имеют одинаковую химическую формулу, но имеют немного разные структуры. Глюкоза и галактоза — это альдозы, а фруктоза — кетоза.
Моносахариды могут существовать в виде линейной цепи или кольцевых молекул. В водных растворах они обычно находятся в кольцевой форме ((рисунок)). Глюкоза в кольцевой форме может иметь два разных расположения гидроксильных групп (ОН) вокруг аномерного углерода (углерод 1, который становится асимметричным в процессе образования кольца).Если гидроксильная группа находится ниже углерода номер 1 в сахаре, она находится в положении альфа ( α ), а если она выше плоскости, она находится в положении бета ( β ).
Пять и шесть углеродных моносахаридов находятся в равновесии между линейной и кольцевой формами. Когда кольцо образуется, боковая цепь замыкается в положении α или β . Фруктоза и рибоза также образуют кольца, хотя они образуют пятичленные кольца в отличие от шестичленного кольца глюкозы.
Дисахариды
Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (или реакции конденсации или синтеза дегидратации). Во время этого процесса гидроксильная группа одного моносахарида соединяется с водородом другого моносахарида, высвобождая молекулу воды и образуя ковалентную связь. Ковалентная связь образуется между молекулой углевода и другой молекулой (в данном случае между двумя моносахаридами). Ученые называют это гликозидной связью ((Рисунок)).Гликозидные связи (или гликозидные связи) могут быть альфа- или бета-типа. Альфа-связь образуется, когда группа ОН на углероде-1 первой глюкозы находится ниже плоскости кольца, а бета-связь образуется, когда группа ОН на углероде-1 находится выше плоскости кольца.
Сахароза образуется, когда мономер глюкозы и мономер фруктозы соединяются в реакции дегидратации с образованием гликозидной связи. При этом теряется молекула воды. По соглашению атомы углерода в моносахариде нумеруются от концевого углерода, ближайшего к карбонильной группе.В сахарозе гликозидная связь образуется между углеродом 1 в глюкозе и углеродом 2 во фруктозе.
Общие дисахариды включают лактозу, мальтозу и сахарозу ((рисунок)). Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Это естественно в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы. Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.
Обычные дисахариды включают мальтозу (зерновой сахар), лактозу (молочный сахар) и сахарозу (столовый сахар).
Полисахариды
Длинная цепь моносахаридов, связанных гликозидными связями, представляет собой полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Молекулярная масса может составлять 100000 дальтон или более в зависимости от количества соединенных мономеров. Крахмал, гликоген, целлюлоза и хитин являются основными примерами полисахаридов.
Растения хранят крахмал в виде сахаров. В растениях эти сахара содержат амилоза и смесь амилопектов (оба полимера глюкозы). Растения способны синтезировать глюкозу, и они накапливают избыток глюкозы сверх своих непосредственных энергетических потребностей в виде крахмала в различных частях растений, включая корни и семена. Крахмал в семенах обеспечивает питание зародыша во время его прорастания, а также может служить источником пищи для людей и животных. Ферменты расщепляют крахмал, потребляемый людьми.Например, амилаза, присутствующая в слюне, катализирует или расщепляет этот крахмал на более мелкие молекулы, такие как мальтоза и глюкоза. Затем клетки могут поглощать глюкозу.
Глюкозный крахмал состоит из мономеров, которые соединены α 1-4 или α 1-6 гликозидными связями. Цифры 1-4 и 1-6 относятся к числу атомов углерода двух остатков, которые соединились с образованием связи. Как показано на рисунке, неразветвленные цепи мономера глюкозы (только α, 1-4 связи) образуют крахмал; тогда как амилопектин представляет собой разветвленный полисахарид ( α, 1-6 связей в точках ветвления).
Амилоза и амилопектин — две разные формы крахмала. Неразветвленные цепи мономера глюкозы содержат амилозу за счет α 1-4 гликозидных связей. Неразветвленные цепи мономера глюкозы содержат амилопектин за счет α 1-4 и α 1-6 гликозидных связей. Из-за способа соединения субъединиц цепи глюкозы имеют спиральную структуру. Гликоген (не показан) похож по структуре на амилопектин, но более разветвлен.
Гликоген — это форма хранения глюкозы у людей и других позвоночных, состоящая из мономеров глюкозы.Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц. Когда уровень глюкозы в крови снижается, гликоген расщепляется, чтобы высвободить глюкозу — процесс, который ученые называют гликогенолизом.
Целлюлоза — самый распространенный природный биополимер. Целлюлоза в основном состоит из клеточной стенки растений. Это обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Мономеры глюкозы содержат целлюлозу, которая β 1-4 гликозидных связей связывает ((рисунок)).
В целлюлозе мономеры глюкозы связаны в неразветвленные цепи β 1-4 гликозидными связями. Из-за способа соединения субъединиц глюкозы каждый мономер глюкозы переворачивается относительно следующего, что приводит к линейной волокнистой структуре.
Как показано на рисунке, каждый второй мономер глюкозы в целлюлозе перевернут, и мономеры плотно упакованы в виде вытянутых длинных цепей. Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток.В то время как пищеварительные ферменты человека не могут разрушить связь β 1-4, травоядные животные, такие как коровы, коалы и буйволы, способны с помощью специализированной флоры в их желудке переваривать растительный материал, богатый целлюлозой, и использовать его. это как источник пищи. У некоторых из этих животных определенные виды бактерий и простейших обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу. В аппендиксе пасущихся животных также содержатся бактерии, переваривающие целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных.Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые животные используют в качестве источника энергии. Термиты также способны расщеплять целлюлозу из-за присутствия в их телах других организмов, выделяющих целлюлазы.
Углеводы выполняют различные функции у разных животных. Членистоногие (насекомые, ракообразные и другие) имеют внешний скелет, экзоскелет, который защищает их внутренние части тела (как мы видим у пчелы на (Рисунок)). Этот экзоскелет состоит из биологической макромолекулы хитина, которая представляет собой полисахаридсодержащий азот.Он состоит из повторяющихся звеньев N-ацетил- β -d-глюкозамина, которые представляют собой модифицированный сахар. Хитин также является основным компонентом клеточных стенок грибов. Грибы не являются ни животными, ни растениями и образуют собственное царство в области Эукарии.
У насекомых жесткий внешний скелет из хитина, одного из полисахаридов. (кредит: Луиза Докер)
Карьерные связи
Зарегистрированный диетолог Ожирение является проблемой здравоохранения во всем мире, и многие болезни, такие как диабет и болезни сердца, становятся все более распространенными из-за ожирения.Это одна из причин, почему люди все чаще обращаются за советом к зарегистрированным диетологам. Зарегистрированные диетологи помогают планировать программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для лечения и профилактики заболеваний. Например, диетологи могут научить пациента с диабетом, как контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов. Диетологи также могут работать в домах престарелых, школах и частных клиниках.
Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, дипломированные диетологи должны пройти программу стажировки под руководством и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в области химии и физиологии (биологических функций) пищи (белков, углеводов и жиров).
.