Содержание

Метаболизм | справочник Пестициды.ru

Cхема метаболических процессов


Cхема метаболических процессов


Процессы метаболизма

Метаболизм включает две группы жизненно важных процессов – катаболизм (энергетический обмен) и анаболизм (биосинтез, или пластический обмен).[3]

  • Катаболизм – это совокупность процессов расщепления питательных веществ, которые происходят в основном за счет реакций окисления. В результате выделяется энергия. Основными формами катаболизма у микроорганизмов являются брожение и дыхание. При брожении происходит неполный распад сложных органических веществ с выделением небольшого количества энергии и накоплении богатых энергией конечных продуктов. При дыхании (аэробном) обычно осуществляется полное окисление соединений с выходом большого количества энергии. [3]
  • Анаболизм объединяет процессы синтеза молекул из более простых веществ, которые присутствуют в окружающей среде. Реакции анаболизма связаны с потреблением свободной энергии, которая вырабатывается в процессах дыхания, брожения. Для протекания пластического обмена необходимо поступление в организм питательных веществ, на основе которых при участии выделенной в ходе катаболизма энергии обновляются структурные компоненты клеток, происходит рост и развитие.[3]

Катаболизм и анаболизм протекают параллельно, многие их реакции и промежуточные продукты являются общими. Тем не менее, на протяжении разных периодов существования интенсивность пластического и энергетического обмена неодинакова. Так, у насекомых в период размножения, линьки, во время ранних фаз развития (яйцо, личинка) синтетические процессы преобладают над процессами распада. В тоже время, определенные дегенеративные изменения в организме (старение, заболевания) способны приводить к преобладанию интенсивности катаболизма над анаболизмом, что порой угрожает гибелью живому объекту. [3](фото)

Превращение сульфооксида в сульфон


Превращение сульфооксида в сульфон



Использовано изображение:[2]

Метаболизм пестицидов

Метаболизм пестицидов – превращения пестицидов под влиянием продуктов жизнедеятельности различных живых организмов – бактерий, грибов, высших растений и животных.[4]

В результате биотрансформации токсичных веществ в большинстве случаев образуются менее токсичные продукты (метаболиты), более растворимые и легко выводимые из организма. В некоторых случаях токсичность метаболитов оказывается выше, чем попавших в организм веществ. Обмен промышленных ядов возможен за счет реакций окисления, восстановления, гидролитического расщепления, метилирования, ацилирования и др. [1]

В метаболизме пестицидов большое значение имеют реакции окисления атома серы в молекулах некоторых веществ, что характерно, например, для инсектицидов из группы производных карбаминовой и фосфорной кислот. Окисление серы у этих соединений происходит независимо от структуры остальной части молекулы, при этом вначале образуется соответствующий сульфооксид, а затем сульфон: (фото) Продукты окисления не отличаются по токсичности от исходного вещества, но они значительно более стойки к гидролизу.

Окисление тионофосфатов


Окисление тионофосфатов



А — тионофосфат, В – фосфат, 1 и 2- свободные радикалы,  3 — кислотный остаток


Использовано изображение:[2]

Реакции метаболизма, происходящие в растениях, обусловливают длительное инсектицидное действие для ряда эфиров фосфорных кислот с тиоэфирным радикалом. Окисление тионофосфатов в различных организмах рассматривается как активирующая ступень в процессах метаболизма этих веществ.[2](фото)

Токсичность продукта реакции для млекопитающих и насекомых увеличивается в десятки и сотни раз по сравнению с исходным веществом. Однако эти токсичные метаболиты легко гидролизуются и поэтому сохраняются в биологических средах непродолжительное время.[2]

Близкие статьи

Ссылки:

Все статьи о токсикологии в разделе: Основы токсикологии

 

Статья составлена с использованием следующих материалов:

Литературные источники:

1.


Голдовская Л.Ф. Химия окружающей среды. М.: Мир; БИНОМ. Лаборатория знаний, 2007. – 295 с

2.

Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева — 3-е изд., перераб. и доп. — М.: Агропромиздат, 1987. — 415 с.: ил.

3.


Липунов И.Н., Первова И.Г. Основы микробиологии и биотехнологии: курс лекций. – Екатеринбург: Урал. гос. лесотехн. Университет, 2008. – 231 с

4.

Мельников Н.Н., Новожилов К.В., Белан С.Р., Пылова Т.Н. Справочник по пестицидам — М.: Химия, 1985. — 352 с.

Свернуть
Список всех источников

что это такое: подробное описание

Слово «метаболизм» часто встречается в материалах на тему спорта и здорового питания. Медики, диетологи и спортсмены единодушно утверждают, что хороший, быстрый метаболизм — это гарантия нормального самочувствия и крепкого здоровья. Но не всегда понятно, что же именно подразумевается под этим термином. Метаболизм: простое определение понятия

Метаболизм: простое определение понятия На протяжении всей жизни в человеческом организме происходят химические процессы — они не останавливаются ни на секунду. Наше тело расщепляет поступающую пищу, получает из нее полезные вещества. Вместе с кровью эти вещества разносятся по организму. Строятся и разрушаются мышечные волокна, обновляются клетки. Выводятся все лишние элементы и токсины. Все эти процессы вместе и называются метаболизмом — или, если проще, обменом веществ. Почему медленный метаболизм — это плохо? В норме обменные процессы должны происходить в быстром ритме. Если метаболизм замедляется, то вместе с ним тормозится и развитие мышечных тканей, клеточное обновление. Организм начинает получать полезные вещества медленнее и в меньших количествах. Зато вредные вещества откладываются — и оказывают негативное влияние на самочувствие. Как можно ускорить обменные процессы? Конечно, скорость метаболизма во многом обусловлена генетикой. Но к счастью, обмен веществ всегда можно хотя бы немного ускорить, если уделить этому особенное внимание. Для этого необходимо: пересмотреть режим питания — есть не трижды в день, а хотя бы 4 – 5 раз, но небольшими порциями; заняться спортом и нарастить мышечную массу — чем она больше, тем стремительнее происходит обмен веществ; пить побольше обычной воды — жидкость помогает ускорению обменных процессов, причем «считается» здесь только питьевая вода, но не чай или кофе; больше гулять и двигаться — насыщение клеток кислородом очень важно для улучшения метаболизма; не допускать сильных стрессов — под влиянием эмоциональных переживаний естественные процессы в организме часто замедляются. Как оценить собственный метаболизм и понять, нужно ли работать над его ускорением? Это довольно просто — замедление обменных процессов выражается в чувстве хронической усталости, в дряблости кожи, в ломкости волос и ногтей. Если самочувствие оставляет желать лучшего — значит, метаболизм работает не так, как нужно, и организму требуются внимание и забота.

МЕТАБОЛИЗМ | Энциклопедия Кругосвет

Содержание статьи

МЕТАБОЛИЗМ, или обмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду. К метаболизму относятся все реакции, в результате которых строятся структурные элементы клеток и тканей, и процессы, в которых из содержащихся в клетках веществ извлекается энергия. Иногда для удобства рассматривают по отдельности две стороны метаболизма – анаболизм и катаболизм, т.е. процессы созидания органических веществ и процессы их разрушения. Анаболические процессы обычно связаны с затратой энергии и приводят к образованию сложных молекул из более простых, катаболические же сопровождаются высвобождением энергии и заканчиваются образованием таких конечных продуктов (отходов) метаболизма, как мочевина, диоксид углерода, аммиак и вода.

Термин «обмен веществ» вошел в повседневную жизнь с тех пор, как врачи стали связывать избыточный или недостаточный вес, чрезмерную нервозность или, наоборот, вялость больного с повышенным или пониженным обменом. Для суждения об интенсивности метаболизма ставят тест на «основной обмен». Основной обмен – это показатель способности организма вырабатывать энергию. Тест проводят натощак в состоянии покоя; измеряют поглощение кислорода (О2) и выделение диоксида углерода (СО2). Сопоставляя эти величины, определяют, насколько полно организм использует («сжигает») питательные вещества. На интенсивность метаболизма влияют гормоны щитовидной железы, поэтому врачи при диагностике заболеваний, связанных с нарушениями обмена, в последнее время все чаще измеряют уровень этих гормонов в крови. См. также ЩИТОВИДНАЯ ЖЕЛЕЗА.

Методы исследования.

При изучении метаболизма какого-нибудь одного из питательных веществ прослеживают все его превращения от той формы, в какой оно поступает в организм, до конечных продуктов, выводимых из организма. В таких исследованиях применяется крайне разнообразный набор биохимических методов.

Использование интактных животных или органов.

Животному вводят изучаемое соединение, а затем в его моче и экскрементах определяют возможные продукты превращений (метаболиты) этого вещества. Более определенную информацию можно получить, исследуя метаболизм определенного органа, например печени или мозга. В этих случаях вещество вводят в соответствующий кровеносный сосуд, а метаболиты определяют в крови, оттекающей от данного органа.

Поскольку такого рода процедуры сопряжены с большими трудностями, часто для исследования используют тонкие срезы органов. Их инкубируют при комнатной температуре или при температуре тела в растворах с добавкой того вещества, метаболизм которого изучают. Клетки в таких препаратах не повреждены, и так как срезы очень тонкие, вещество легко проникает в клетки и легко выходит из них. Иногда затруднения возникают из-за слишком медленного прохождения вещества сквозь клеточные мембраны. В этих случаях ткани измельчают, чтобы разрушить мембраны, и с изучаемым веществом инкубируют клеточную кашицу. Именно в таких опытах было показано, что все живые клетки окисляют глюкозу до СО2 и воды и что только ткань печени способна синтезировать мочевину.

Использование клеток.

Даже клетки представляют собой очень сложно организованные системы. В них имеется ядро, а в окружающей его цитоплазме находятся более мелкие тельца, т.н. органеллы, различных размеров и консистенции. С помощью соответствующей методики ткань можно «гомогенизировать», а затем подвергнуть дифференциальному центрифугированию (разделению) и получить препараты, содержащие только митохондрии, только микросомы или прозрачную жидкость – цитоплазму. Эти препараты можно по отдельности инкубировать с тем соединением, метаболизм которого изучается, и таким путем установить, какие именно субклеточные структуры участвуют в его последовательных превращениях. Известны случаи, когда начальная реакция протекает в цитоплазме, ее продукт подвергается превращению в микросомах, а продукт этого превращения вступает в новую реакцию уже в митохондриях. Инкубация изучаемого вещества с живыми клетками или с гомогенатом ткани обычно не выявляет отдельные этапы его метаболизма, и только последовательные эксперименты, в которых для инкубации используются те или иные субклеточные структуры, позволяют понять всю цепочку событий.

Использование радиоактивных изотопов.

Для изучения метаболизма какого-либо вещества необходимы: 1) соответствующие аналитические методы для определения этого вещества и его метаболитов; и 2) методы, позволяющие отличать добавленное вещество от того же вещества, уже присутствующего в данном биологическом препарате. Эти требования служили главным препятствием при изучении метаболизма до тех пор, пока не были открыты радиоактивные изотопы элементов и в первую очередь радиоактивный углерод 14C. С появлением соединений, «меченных» 14C, а также приборов для измерения слабой радиоактивности эти трудности были преодолены. Если к биологическому препарату, например к суспензии митохондрий, добавляют меченную 14C жирную кислоту, то никаких специальных анализов для определения продуктов ее превращений не требуется; чтобы оценить скорость ее использования, достаточно просто измерять радиоактивность последовательно получаемых митохондриальных фракций. Эта же методика позволяет легко отличать молекулы радиоактивной жирной кислоты, введенной экспериментатором, от молекул жирной кислоты, уже присутствовавших в митохондриях к началу эксперимента.

Хроматография и электрофорез.

В дополнение к вышеупомянутым требованиям биохимику необходимы и методы, позволяющие разделять смеси, состоящие из малых количеств органических веществ. Важнейший из них – хроматография, в основе которой лежит феномен адсорбции. Разделение компонентов смеси проводят при этом либо на бумаге, либо путем адсорбции на сорбенте, которым заполняют колонки (длинные стеклянные трубки), с последующей постепенной элюцией (вымыванием) каждого из компонентов.

Разделение методом электрофореза зависит от знака и числа зарядов ионизированных молекул. Электрофорез проводят на бумаге или на каком-нибудь инертном (неактивном) носителе, таком, как крахмал, целлюлоза или каучук.

Высокочувствительный и эффективный метод разделения – газовая хроматография. Им пользуются в тех случаях, когда подлежащие разделению вещества находятся в газообразном состоянии или могут быть в него переведены.

Выделение ферментов.

Последнее место в описываемом ряду – животное, орган, тканевой срез, гомогенат и фракция клеточных органелл – занимает фермент, способный катализировать определенную химическую реакцию. Выделение ферментов в очищенном виде – важный раздел в изучении метаболизма.

Сочетание перечисленных методов позволило проследить главные метаболические пути у большей части организмов (в том числе у человека), установить, где именно эти различные процессы протекают, и выяснить последовательные этапы главных метаболических путей. К настоящему времени известны тысячи отдельных биохимических реакций, изучены участвующие в них ферменты.

Клеточный метаболизм.

Живая клетка – это высокоорганизованная система. В ней имеются различные структуры, а также ферменты, способные их разрушить. Содержатся в ней и крупные макромолекулы, которые могут распадаться на более мелкие компоненты в результате гидролиза (расщепления под действием воды). В клетке обычно много калия и очень мало натрия, хотя клетка существует в среде, где натрия много, а калия относительно мало, и клеточная мембрана легко проницаема для обоих ионов. Следовательно, клетка – это химическая система, весьма далекая от равновесия. Равновесие наступает только в процессе посмертного автолиза (самопереваривания под действием собственных ферментов).

Потребность в энергии.

Чтобы удержать систему в состоянии, далеком от химического равновесия, требуется производить работу, а для этого необходима энергия. Получение этой энергии и выполнение этой работы – непременное условие для того, чтобы клетка оставалась в своем стационарном (нормальном) состоянии, далеком от равновесия. Одновременно в ней выполняется и иная работа, связанная со взаимодействием со средой, например: в мышечных клетках – сокращение; в нервных клетках – проведение нервного импульса; в клетках почек – образование мочи, значительно отличающейся по своему составу от плазмы крови; в специализированных клетках желудочно-кишечного тракта – синтез и выделение пищеварительных ферментов; в клетках эндокринных желез – секреция гормонов; в клетках светляков – свечение; в клетках некоторых рыб – генерирование электрических разрядов и т. д.

Источники энергии.

В любом из перечисленных выше примеров непосредственным источником энергии, которую клетка использует для производства работы, служит энергия, заключенная в структуре аденозинтрифосфата (АТФ). В силу особенностей своей структуры это соединение богато энергией, и разрыв связей между его фосфатными группами может происходить таким образом, что высвобождающаяся энергия используется для производства работы. Однако энергия не может стать доступной для клетки при простом гидролитическом разрыве фосфатных связей АТФ: в этом случае она расходуется впустую, выделяясь в виде тепла. Процесс должен состоять из двух последовательных этапов, в каждом из которых участвует промежуточный продукт, обозначенный здесь X–Ф (в приведенных уравнениях X и Y означают два разных органических вещества; Ф – фосфат; АДФ – аденозиндифосфат):

Поскольку практически для любого проявления жизнедеятельности клеток необходим АТФ, неудивительно, что метаболическая активность живых клеток направлена в первую очередь на синтез АТФ. Этой цели служат различные сложные последовательности реакций, в которых используется потенциальная химическая энергия, заключенная в молекулах углеводов и жиров (липидов).

МЕТАБОЛИЗМ УГЛЕВОДОВ И ЛИПИДОВ

Синтез АТФ.

Анаэробный (без участия кислорода).

Главная роль углеводов и липидов в клеточном метаболизме состоит в том, что их расщепление на более простые соединения обеспечивает синтез АТФ. Несомненно, что те же процессы протекали и в первых, самых примитивных клетках. Однако в атмосфере, лишенной кислорода, полное окисление углеводов и жиров до CO2 было невозможно. У этих примитивных клеток имелись все же механизмы, с помощью которых перестройка структуры молекулы глюкозы обеспечивала синтез небольших количеств АТФ. Речь идет о процессах, которые у микроорганизмов называют брожением. Лучше всего изучено сбраживание глюкозы до этилового спирта и CO2 у дрожжей.

В ходе 11 последовательных реакций, необходимых для того, чтобы завершилось это превращение, образуется ряд промежуточных продуктов, представляющих собой эфиры фосфорной кислоты (фосфаты). Их фосфатная группа переносится на аденозиндифосфат (АДФ) с образованием АТФ. Чистый выход АТФ составляет 2 молекулы АТФ на каждую молекулу глюкозы, расщепленную в процессе брожения. Аналогичные процессы происходят во всех живых клетках; поскольку они поставляют необходимую для жизнедеятельности энергию, их иногда (не вполне корректно) называют анаэробным дыханием клеток.

У млекопитающих, в том числе у человека, такой процесс называется гликолизом и его конечным продуктом является молочная кислота, а не спирт и CO2. Вся последовательность реакций гликолиза, за исключением двух последних этапов, полностью идентична процессу, протекающему в дрожжевых клетках.

Аэробный (с использованием кислорода).

С появлением в атмосфере кислорода, источником которого послужил, очевидно, фотосинтез растений, в ходе эволюции развился механизм, обеспечивающий полное окисление глюкозы до CO2 и воды, – аэробный процесс, в котором чистый выход АТФ составляет 38 молекул АТФ на каждую окисленную молекулу глюкозы. Этот процесс потребления клетками кислорода для образования богатых энергией соединений известен как клеточное дыхание (аэробное). В отличие от анаэробного процесса, осуществляемого ферментами цитоплазмы, окислительные процессы протекают в митохондриях. В митохондриях пировиноградная кислота – промежуточный продукт, образовавшийся в анаэробной фазе – окисляется до СО2 в шести последовательных реакциях, в каждой из которых пара электронов переносится на общий акцептор – кофермент никотинамидадениндинуклеотид (НАД). Эту последовательность реакций называют циклом трикарбоновых кислот, циклом лимонной кислоты или циклом Кребса. Из каждой молекулы глюкозы образуется 2 молекулы пировиноградной кислоты; 12 пар электронов отщепляется от молекулы глюкозы в ходе ее окисления, описываемого уравнением:

Перенос электронов.

В каждой митохондрии имеется механизм, посредством которого восстановленный НАД (НАДЧН, где Н – водород), образовавшийся в цикле трикарбоновых кислот, передает свою пару электронов кислороду. Перенос, однако, не происходит напрямую. Электроны как бы передаются «из рук в руки» и, лишь пройдя цепь переносчиков, присоединяются к кислороду. Эта «цепь переноса электронов» состоит из следующих компонентов:

НАДНЧН ® Флавинадениндинклеотид ® Кофермент Q ®

® Цитохром b ® Цитохром c ® Цитохром a ® O2

Все компоненты этой системы, находящиеся в митохондриях, фиксированы в пространстве и сцеплены друг с другом. Такое их состояние облегчает перенос электронов.

В состав НАД входит никотиновая кислота (витамин ниацин), а в состав флавинадениндинуклеотида – рибофлавин (витамин B2). Кофермент Q представляет собой высокомолекулярный хинон, синтезируемый в печени, а цитохромы – это три разных белка, каждый из которых, подобно гемоглобину, содержит гемогруппу.

В цепи переноса электронов на каждую пару электронов, перенесенную от НАДЧН на O2, синтезируется 3 молекулы АТФ. Поскольку от каждой молекулы глюкозы отщепляются и передаются молекулам НАД 12 пар электронов, в общей сложности на каждую молекулу глюкозы образуется 3ґ12 = 36 молекул АТФ. Этот процесс образования АТФ в ходе окисления называется окислительным фосфорилированием.

Липиды как источник энергии.

Жирные кислоты могут использоваться в качестве источника энергии приблизительно так же, как и углеводы. Окисление жирных кислот протекает путем последовательного отщепления от молекулы жирной кислоты двууглеродного фрагмента с образованием ацетилкофермента A (ацетил-КоА) и одновременной передачей двух пар электронов в цепь переноса электронов. Образовавшийся ацетил-КоА – нормальный компонент цикла трикарбоновых кислот, и в дальнейшем его судьба не отличается от судьбы ацетил-КоА, поставляемого углеводным обменом. Таким образом, механизмы синтеза АТФ при окислении как жирных кислот, так и метаболитов глюкозы практически одинаковы.

Если организм животного получает энергию почти целиком за счет одного только окисления жирных кислот, а это бывает, например, при голодании или при сахарном диабете, то скорость образования ацетил-КоА превышает скорость его окисления в цикле трикарбоновых кислот. В этом случае лишние молекулы ацетил-КоА реагируют друг с другом, в результате чего образуются в конечном счете ацетоуксусная и b-гидроксимасляная кислоты. Их накопление является причиной патологического состояния, т.н. кетоза (одного из видов ацидоза), который при тяжелом диабете может вызвать кому и смерть.

Запасание энергии.

Животные питаются нерегулярно, и их организму нужно как-то запасать заключенную в пище энергию, источником которой являются поглощенные животным углеводы и жиры. Жирные кислоты могут запасаться в виде нейтральных жиров либо в печени, либо в жировой ткани. Углеводы, поступая в большом количестве, в желудочно-кишечном тракте гидролизуются до глюкозы или иных сахаров, которые затем в печени превращаются в ту же глюкозу. Здесь из глюкозы синтезируется гигантский полимер гликоген путем присоединения друг к другу остатков глюкозы с отщеплением молекул воды (число остатков глюкозы в молекулах гликогена доходит до 30 000). Когда возникает потребность в энергии, гликоген вновь распадается до глюкозы в реакции, продуктом которой является глюкозофосфат. Этот глюкозофосфат направляется на путь гликолиза – процесса, составляющего часть пути окисления глюкозы. В печени глюкозофосфат может также подвергнуться гидролизу, и образующаяся глюкоза поступает в кровоток и доставляется кровью к клеткам в разных частях тела.

Синтез липидов из углеводов.

Если количество углеводов, поглощенных с пищей за один прием, больше того, какое может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, но далее этот ацетил-КоА используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Процесс синтеза можно описать как обращение обычного процесса окисления жирных клеток. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), отлагающихся в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь. Здесь они адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются клетками самых разных типов. Механизмов, способных осуществлять синтез глюкозы из жирных кислот, у животных нет, но у растений такие механизмы имеются.

Метаболизм липидов.

Липиды попадают в организм главным образом в форме триглицеридов жирных кислот. В кишечнике под действием ферментов поджелудочной железы они подвергаются гидролизу, продукты которого всасываются клетками стенки кишечника. Здесь из них вновь синтезируются нейтральные жиры, которые через лимфатическую систему поступают в кровь и либо транспортируются в печень, либо отлагаются в жировой ткани. Выше уже указывалось, что жирные кислоты могут также синтезироваться заново из углеводных предшественников. Следует отметить, что, хотя в клетках млекопитающих может происходить включение одной двойной связи в молекулы длинноцепочечных жирных кислот (между С–9 и С–10), включать вторую и третью двойную связь эти клетки неспособны. Поскольку жирные кислоты с двумя и тремя двойными связями играют важную роль в метаболизме млекопитающих, они в сущности являются витаминами. Поэтому линолевую (C18:2) и линоленовую (C18:3) кислоты называют незаменимыми жирными кислотами. В то же время в клетках млекопитающих в линоленовую кислоту может включаться четвертая двойная связь и путем удлинения углеродной цепи может образоваться арахидоновая кислота (C20:4), также необходимый участник метаболических процессов.

В процессе синтеза липидов остатки жирных кислот, связанные с коферментом А (ацил-КоА), переносятся на глицерофосфат – эфир фосфорной кислоты и глицерина. В результате образуется фосфатидная кислота – соединение, в котором одна гидроксильная группа глицерина этерифицирована фосфорной кислотой, а две группы – жирными кислотами. При образовании нейтральных жиров фосфорная кислота удаляется путем гидролиза, и ее место занимает третья жирная кислота в результате реакции с ацил-КоА. Кофермент А образуется из пантотеновой кислоты (одного из витаминов). В его молекуле имеется сульфгидрильная (– SH) группа, способная реагировать с кислотами с образованием тиоэфиров. При образовании фосфолипидов фосфатидная кислота реагирует непосредственно с активированным производным одного из азотистых оснований, таких, как холин, этаноламин или серин.

За исключением витамина D, все встречающиеся в организме животных стероиды (производные сложных спиртов) легко синтезируются самим организмом. Сюда относятся холестерин (холестерол), желчные кислоты, мужские и женские половые гормоны и гормоны надпочечников. В каждом случае исходным материалом для синтеза служит ацетил-КоА: из ацетильных групп путем многократно повторяющейся конденсации строится углеродный скелет синтезируемого соединения.

МЕТАБОЛИЗМ БЕЛКОВ

Синтез аминокислот.

Растения и большинство микроорганизмов могут жить и расти в среде, в которой для их питания имеются только минеральные вещества, диоксид углерода и вода. Это значит, что все обнаруживаемые в них органические вещества эти организмы синтезируют сами. Встречающиеся во всех живых клетках белки построены из 21 вида аминокислот, соединенных в различной последовательности. Аминокислоты синтезируются живыми организмами. В каждом случае ряд химических реакций приводит к образованию a-кетокислоты. Одна такая a-кетокислота, а именно a-кетоглутаровая (обычный компонент цикла трикарбоновых кислот), участвует в связывании азота по следующему уравнению:

a-Кетоглутаровая кислота + NH3 + НАДЧН ®

® Глутаминовая кислота + НАД.

Азот глутаминовой кислоты может быть затем передан любой из других a-кетокислот с образованием соответствующей аминокислоты.

Организм человека и большинства других животных сохранил способность синтезировать все аминокислоты за исключением девяти т.н. незаменимых аминокислот. Поскольку кетокислоты, соответствующие этим девяти, не синтезируются, незаменимые аминокислоты должны поступать с пищей.

Синтез белков.

Аминокислоты нужны для биосинтеза белка. Процесс биосинтеза протекает обычно следующим образом. В цитоплазме клетки каждая аминокислота «активируется» в реакции с АТФ, а затем присоединяется к концевой группе молекулы рибонуклеиновой кислоты, специфичной именно для данной аминокислоты. Эта сложная молекула связывается с небольшим тельцем, т.н. рибосомой, в положении, определяемом более длинной молекулой рибонуклеиновой кислоты, прикрепленной к рибосоме. После того как все эти сложные молекулы соответствующим образом выстроились, связи между исходной аминокислотой и рибонуклеиновой кислотой разрываются и возникают связи между соседними аминокислотами – синтезируется специфичный белок. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.

Синтез других азотсодержащих соединений.

В организме млекопитающих аминокислоты используются не только для биосинтеза белков, но и как исходный материал для синтеза многих азотсодержащих соединений. Аминокислота тирозин является предшественником гормонов адреналина и норадреналина. Простейшая аминокислота глицин служит исходным материалом для биосинтеза пуринов, входящих в состав нуклеиновых кислот, и порфиринов, входящих в состав цитохромов и гемоглобина. Аспарагиновая кислота – предшественник пиримидинов нуклеиновых кислот. Метильная группа метионина передается ряду других соединений в ходе биосинтеза креатина, холина и саркозина. При биосинтезе креатина от одного соединения к другому передается также и гуанидиновая группировка аргинина. Триптофан служит предшественником никотиновой кислоты, а из валина в растениях синтезируется такой витамин, как пантотеновая кислота. Все это лишь отдельные примеры использования аминокислот в процессах биосинтеза.

Азот, поглощаемый микроорганизмами и высшими растениями в виде иона аммония, расходуется почти целиком на образование аминокислот, из которых затем синтезируются многие азотсодержащие соединения живых клеток. Избыточных количеств азота ни растения, ни микроорганизмы не поглощают. В отличие от них, у животных количество поглощенного азота зависит от содержащихся в пище белков. Весь азот, поступивший в организм в виде аминокислот и не израсходованный в процессах биосинтеза, довольно быстро выводится из организма с мочой. Происходит это следующим образом. В печени неиспользованные аминокислоты передают свой азот a-кетоглутаровой кислоте с образованием глутаминовой кислоты, которая дезаминируется, высвобождая аммиак. Далее азот аммиака может либо на время запасаться путем синтеза глутамина, либо сразу же использоваться для синтеза мочевины, протекающего в печени.

У глутамина есть и другая роль. Он может подвергаться гидролизу в почках с высвобождением аммиака, который поступает в мочу в обмен на ионы натрия. Этот процесс крайне важен как средство поддержания кислотно-щелочного равновесия в организме животного. Почти весь аммиак, происходящий из аминокислот и, возможно, из других источников, превращается в печени в мочевину, так что свободного аммиака в крови обычно почти нет. Однако при некоторых условиях довольно значительные количества аммиака содержит моча. Этот аммиак образуется в почках из глутамина и переходит в мочу в обмен на ионы натрия, которые таким образом реадсорбируются и задерживаются в организме. Этот процесс усиливается при развитии ацидоза – состояния, при котором организм нуждается в дополнительных количествах катионов натрия для связывания избытка ионов бикарбоната в крови.

Избыточные количества пиримидинов тоже распадаются в печени через ряд реакций, в которых высвобождается аммиак. Что касается пуринов, то их избыток подвергается окислению с образованием мочевой кислоты, выделяющейся с мочой у человека и других приматов, но не у остальных млекопитающих. У птиц отсутствует механизм синтеза мочевины, и именно мочевая кислота, а не мочевина, является у них конечным продуктом обмена всех азотсодержащих соединений.

Нуклеиновые кислоты.

Структура и синтез этих азотсодержащих соединений подробно описаны в статье НУКЛЕИНОВЫЕ КИСЛОТЫ.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕТАБОЛИЗМЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Можно сформулировать некоторые общие понятия, или «правила», касающиеся метаболизма. Приведенные ниже несколько главных «правил» позволяют лучше понять, как протекает и регулируется метаболизм.

1. Метаболические пути необратимы. Распад никогда не идет по пути, который являлся бы простым обращением реакций синтеза. В нем участвуют другие ферменты и другие промежуточные продукты. Нередко противоположно направленные процессы протекают в разных отсеках клетки. Так, жирные кислоты синтезируются в цитоплазме при участии одного набора ферментов, а окисляются в митохондриях при участии совсем другого набора.

2. Ферментов в живых клетках достаточно для того, чтобы все известные метаболические реакции могли протекать гораздо быстрее, чем это обычно наблюдается в организме. Следовательно, в клетках существуют какие-то регуляторные механизмы. Открыты разные типы таких механизмов.

а) Фактором, ограничивающим скорость метаболических превращений данного вещества, может быть поступление этого вещества в клетку; именно на этот процесс в таком случае и направлена регуляция. Роль инсулина, например, связана с тем, что он, по-видимому, облегчает проникновение глюкозы во все клетки, глюкоза же подвергается превращениям с той скоростью, с какой она поступает. Сходным образом проникновение железа и кальция из кишечника в кровь зависит от процессов, скорость которых регулируется.

б) Вещества далеко не всегда могут свободно переходить из одного клеточного отсека в другой; есть данные, что внутриклеточный перенос регулируется некоторыми стероидными гормонами.

в) Выявлено два типа сервомеханизмов «отрицательной обратной связи».

У бактерий были обнаружены примеры того, что присутствие продукта какой-нибудь последовательности реакций, например аминокислоты, подавляет биосинтез одного из ферментов, необходимых для образования этой аминокислоты.

В каждом случае фермент, биосинтез которого оказывается затронутым, был ответствен за первый «определяющий» этап (на схеме реакция 4) метаболического пути, ведущего к синтезу данной аминокислоты.

Второй механизм хорошо изучен у млекопитающих. Это простое ингибирование конечным продуктом (в нашем случае – аминокислотой) фермента, ответственного за первый «определяющий» этап метаболического пути.

Еще один тип регулирования посредством обратной связи действует в тех случаях, когда окисление промежуточных продуктов цикла трикарбоновых кислот сопряжено с образованием АТФ из АДФ и фосфата в процессе окислительного фосфорилирования. Если весь имеющийся в клетке запас фосфата и (или) АДФ уже исчерпан, то окисление приостанавливается и может возобновиться лишь после того, как этот запас вновь станет достаточным. Таким образом, окисление, смысл которого в том, чтобы поставлять полезную энергию в форме АТФ, происходит только тогда, когда возможен синтез АТФ.

3. В биосинтетических процессах участвует сравнительно небольшое число строительных блоков, каждый из которых используется для синтеза многих соединений. Среди них можно назвать ацетилкофермент А, глицерофосфат, глицин, карбамилфосфат, поставляющий карбамильную (H2N–CO–) группу, производные фолиевой кислоты, служащие источником гидроксиметильной и формильной групп, S-аденозилметионин – источник метильных групп, глутаминовую и аспарагиновую кислоты, поставляющие аминогруппы, и наконец, глутамин – источник амидных групп. Из этого относительно небольшого числа компонентов строятся все те разнообразные соединения, которые мы находим в живых организмах.

4. Простые органические соединения редко участвуют в метаболических реакциях непосредственно. Обычно они должны быть сначала «активированы» путем присоединения к одному из ряда соединений, универсально используемых в метаболизме. Глюкоза, например, может подвергнуться окислению лишь после того, как она будет этерифицирована фосфорной кислотой, для прочих же своих превращений она должна быть этерифицирована уридиндифосфатом. Жирные кислоты не могут быть вовлечены в метаболические превращения прежде, чем они образуют эфиры с коферментом А. Каждый из этих активаторов либо родствен одному из нуклеотидов, входящих в состав рибонуклеиновой кислоты, либо образуется из какого-нибудь витамина. Легко понять в связи с этим, почему витамины требуются в таких небольших количествах. Они расходуются на образование «коферментов», а каждая молекула кофермента на протяжении жизни организма используется многократно, в отличие от основных питательных веществ (например, глюкозы), каждая молекула которых используется только один раз.

В заключение следует сказать, что термин «метаболизм», означавший ранее нечто не более сложное, чем просто использование углеводов и жиров в организме, теперь применяется для обозначения тысяч ферментативных реакций, вся совокупность которых может быть представлена как огромная сеть метаболических путей, многократно пересекающихся (из-за наличия общих промежуточных продуктов) и управляемых очень тонкими регуляторными механизмами.

МЕТАБОЛИЗМ МИНЕРАЛЬНЫХ ВЕЩЕСТВ

Относительное содержание.

Различные элементы, встречающиеся в живых организмах, перечислены ниже в убывающем порядке в зависимости от их относительного содержания: 1) кислород, углерод, водород и азот; 2) кальций, фосфор, калий и сера; 3) натрий, хлор, магний и железо; 4) марганец, медь, молибден, селен, йод и цинк; 5) алюминий, фтор, кремний и литий; 6) бром, мышьяк, свинец и, возможно, некоторые другие.

Кислород, углерод, водород и азот – это те элементы, из которых построены мягкие ткани тела. Они входят в состав таких соединений, как углеводы, липиды, белки, вода, диоксид углерода и аммиак. Элементы, перечисленные в пп. 2 и 3, находятся в организме обычно в виде одного или нескольких неорганических соединений, а элементы пп. 4, 5 и 6 присутствуют только в следовых количествах и потому их называют микроэлементами.

Распределение в организме.

Кальций.

Кальций присутствует главным образом в костной ткани и в зубах, преимущественно в виде фосфата и в небольших количествах в виде карбоната и фторида. Поступающий с пищей кальций всасывается в основном в верхних отделах кишечника, имеющих слабокислую реакцию. Этому всасыванию (у человека здесь всасывается всего 20–30% кальция пищи) способствует витамин D. Под действием витамина D клетки кишечника вырабатывают особый белок, который связывает кальций и облегчает его перенос через стенку кишечника в кровь. На всасывание влияет также присутствие некоторых других веществ, в особенности фосфата и оксалата, которые в малых количествах способствуют всасыванию, а в больших, наоборот, подавляют его.

В крови около половины кальция связано с белком, остальное составляют ионы кальция. Соотношение ионизированной и неионизированной форм зависит от общей концентрации кальция в крови, а также от содержания белка и фосфата и концентрации водородных ионов (рН крови). Доля неионизированного кальция, на которую влияет уровень белка, позволяет косвенным образом судить о качестве питания и об эффективности работы печени, в которой идет синтез плазменных белков.

На количество ионизированного кальция влияют, с одной стороны, витамин D и факторы, воздействующие на всасывание, а с другой – паратиреоидный гормон и, возможно, также витамин D, поскольку оба эти вещества регулируют как скорость отложения кальция в костной ткани, так и его мобилизацию, т.е. вымывание из костей. Избыток паратиреоидного гормона стимулирует выход кальция из костной ткани, что приводит к повышению его концентрации в плазме. Изменяя скорости всасывания и экскреции кальция и фосфата, а также скорости образования костной ткани и ее разрушения, эти механизмы строго контролируют концентрацию кальция и фосфата в сыворотке крови. Ионы кальция играют регулирующую роль во многих физиологических процессах, в том числе в нервных реакциях, мышечном сокращении, свертывании крови. Выведение кальция из организма происходит в норме в основном (на 2/3) через желчь и кишечник и в меньшей степени (1/3) – через почки.

Фосфор.

Метаболизм фосфора – одного из главных компонентов костной ткани и зубов – во многом зависит от тех же факторов, что и метаболизм кальция. Фосфор в виде фосфата присутствует в организме также в сотнях различных физиологически важных органических эфиров. Паратиреоидный гормон стимулирует выведение фосфора с мочой и выход его из костной ткани; тем самым он регулирует концентрацию фосфора в плазме крови.

Натрий.

Натрий – главный катион внеклеточной жидкости – вместе с белком, хлоридом и бикарбонатом играет важнейшую роль в регулировании осмотического давления и pH (концентрации водородных ионов) крови. В клетках, напротив, содержится очень мало натрия, так как они обладают механизмом для выведения ионов натрия и удержания ионов калия. Весь натрий, превышающий потребности организма, очень быстро выводится через почки.

Поскольку во всех процессах выделения натрий теряется, он должен постоянно поступать в организм с пищей. При ацидозе, когда необходимо, чтобы из организма выводились большие количества анионов (например, хлорида или ацетоацетата), почки предотвращают чрезмерную потерю натрия благодаря образованию аммиака из глутамина. Выведение натрия через почки регулируется гормоном коры надпочечников альдостероном. Под действием этого гормона в кровь возвращается достаточно натрия для поддержания нормального осмотического давления и нормального объема внеклеточной жидкости.

Суточная потребность в хлористом натрии составляет 5–10 г. Эта величина возрастает при поглощении больших количеств жидкости, когда усиливается потоотделение и выделяется больше мочи.

Калий.

В отличие от натрия, калий содержится в клетках в больших количествах, но во внеклеточной жидкости его мало. Главная функция калия – регулирование внутриклеточного осмотического давления и поддержание кислотно-щелочного равновесия. Он также играет важную роль в проведении нервного импульса и во многих ферментных системах, в том числе и в тех, которые участвуют в мышечном сокращении. Калий широко распространен в природе, и его много в любой пище, так что спонтанно калиевая недостаточность возникнуть не может. В плазме концентрация калия регулируется альдостероном, стимулирующим его экскрецию с мочой.

Сера.

С пищей сера поступает в организм главным образом в составе двух аминокислот – цистина и метионина. На конечных этапах метаболизма этих аминокислот сера высвобождается и в результате окисления переводится в неорганическую форму. В составе цистина и метионина сера присутствует в структурных белках. Важную роль играет также сульфгидрильная (–SH) группа цистеина, от которой зависит активность многих ферментов.

Большая часть серы выводится с мочой в виде сульфата. Небольшое количество экскретируемого сульфата обычно связано с органическими соединениями типа фенолов.

Магний.

Метаболизм магния сходен с метаболизмом кальция, и в виде комплекса с фосфатом этот элемент тоже входит в состав костной ткани. Магний присутствует во всех живых клетках, где он функционирует как необходимый компонент многих ферментных систем; эта его роль была убедительно продемонстрирована на примере углеводного обмена в мышцах. Магний, как и калий, широко распространен, и вероятность возникновения его недостаточности очень мала.

Железо.

Железо входит в состав гемоглобина и других гемопротеинов, а именно миоглобина (мышечного гемоглобина), цитохромов (дыхательных ферментов) и каталазы, а также в состав некоторых ферментов, не содержащих гемогруппы. Всасывается железо в верхних отделах кишечника, причем это единственный элемент, всасывающийся только тогда, когда его запас в организме полностью исчерпан. В плазме железо транспортируется в соединении с белком (трансферрином). Через почки железо не выводится; избыток его накапливается в печени в соединении с особым белком (ферритином).

Микроэлементы.

У каждого микроэлемента, присутствующего в организме, своя особая функция, связанная с тем, что он стимулирует действие того или иного фермента или как-либо иначе на него влияет. Цинк необходим для кристаллизации инсулина; кроме того, он является компонентом карбоангидразы (фермента, участвующего в транспорте диоксида углерода) и некоторых других ферментов. Молибден и медь – тоже необходимые компоненты различных ферментов. Иод требуется для синтеза трииодтиронина, гормона щитовидной железы. Фтор (входящий в состав зубной эмали) способствует предотвращению кариеса.

ИСПОЛЬЗОВАНИЕ МЕТАБОЛИТОВ

Углеводы.

Всасывание.

Моносахариды, или простые сахара, высвобождающиеся при переваривании углеводов пищи, переходят из кишечника в кровоток в результате процесса, называемого всасыванием. Механизм всасывания представляет собой сочетание простой диффузии и химической реакции (активного всасывания). Одна из гипотез, касающихся природы химической фазы процесса, предполагает, что в этой фазе моносахариды соединяются с фосфорной кислотой в реакции, катализируемой ферментом из группы киназ, после чего проникают в кровеносные сосуды и здесь высвобождаются в результате ферментативного дефосфорилирования (разрыва фосфатной связи), катализируемого одной из фосфатаз. Именно активным всасыванием объясняется то, что разные моносахариды всасываются с разной скоростью и что углеводы всасываются даже тогда, когда уровень сахара в крови выше, чем в кишечнике, т.е. в условиях, когда естественно было бы ожидать их перемещения в обратном направлении – из крови в кишечник.

Механизмы гомеостаза.

Поступающие в кровоток моносахариды повышают уровень сахара в крови. При голодании концентрация глюкозы в крови колеблется обычно от 70 до 100 мг на 100 мл крови. Этот уровень поддерживается с помощью механизмов, называемых механизмами гомеостаза (самостабилизации). Как только уровень сахара в крови в результате всасывания из кишечника повышается, в действие вступают процессы, выводящие сахар из крови, так что уровень его колеблется не слишком сильно.

Подобно глюкозе, все прочие моносахариды поступают из кровотока в печень, где превращаются в глюкозу. Теперь они неотличимы как от глюкозы, которая всосалась, так и от той, что уже была в организме, и подвергаются тем же метаболическим превращениям. Один из механизмов гомеостаза углеводов, функционирующий в печени, – это гликогенез, посредством которого глюкоза переходит из крови в клетки, где превращается в гликоген. Гликоген хранится в печени до тех пор, пока не произойдет снижение уровня сахара в крови: в этой ситуации гомеостатический механизм вызовет распад накопленного гликогена до глюкозы, которая вновь поступит в кровь.

Превращения и использование.

Поскольку кровь поставляет глюкозу во все ткани тела и все ткани используют ее для получения энергии, уровень глюкозы в крови снижается главным образом за счет ее использования.

В мышцах глюкоза крови превращается в гликоген. Однако мышечный гликоген не может быть использован для получения глюкозы, которая перешла бы в кровь. В нем заключен запас энергии, и скорость его использования зависит от мышечной активности. В мышечной ткани содержатся два соединения с большим запасом легко доступной энергии в форме богатых энергией фосфатных связей – креатинфосфат и аденозинтрифосфат (АТФ). При отщеплении от этих соединений их фосфатных групп высвобождается энергия для мышечного сокращения. Чтобы мышца вновь могла сокращаться, эти соединения должны быть восстановлены в своей исходной форме. Для этого требуется энергия, которую поставляет окисление продуктов распада гликогена. При мышечном сокращении гликоген превращается в глюкозофосфат, а затем – через ряд реакций – во фруктозодифосфат. Фруктозодифосфат распадается на два трехуглеродных соединения, из которых после ряда этапов образуется сначала пировиноградная кислота, а в конечном итоге – молочная кислота, как об этом уже говорилось при описании метаболизма углеводов. Это превращение гликогена в молочную кислоту, сопровождающееся высвобождением энергии, может происходить в отсутствие кислорода.

При недостатке кислорода молочная кислота накапливается в мышцах, диффундирует в кровоток и поступает в печень, где из нее вновь образуется гликоген. Если кислорода достаточно, то молочная кислота в мышцах не накапливается. Вместо этого она, как это описано выше, полностью окисляется через цикл трикарбоновых кислот до диоксида углерода и воды с образованием АТФ, который может быть использован для сокращения.

Метаболизм углеводов в нервной ткани и эритроцитах отличается от метаболизма в мышцах тем, что гликоген здесь не участвует. Однако и здесь промежуточными продуктами являются пировиноградная и молочная кислоты, образующиеся при расщеплении глюкозофосфата.

Глюкоза используется не только в клеточном дыхании, но и во многих других процессах: синтезе лактозы (молочного сахара), образовании жиров, а также особых сахаров, входящих в состав полисахаридов соединительной ткани и ряда других тканей.

Гликоген печени, синтезируемый при всасывании углеводов в кишечнике, служит самым доступным источником глюкозы, когда всасывание отсутствует. Если этот источник оказывается исчерпанным, в печени начинается процесс глюконеогенеза. Глюкоза образуется при этом из некоторых аминокислот (из 100 г белка образуется 58 г глюкозы) и нескольких других неуглеводных соединений, в том числе из глицериновых остатков нейтральных жиров.

Некоторую, хотя и не столь важную, роль в метаболизме углеводов играют почки. Они выводят из организма избыток глюкозы, когда ее концентрация в крови слишком высока; при меньших концентрациях глюкоза практически не выводится.

В регулировании метаболизма углеводов участвует несколько гормонов, в том числе гормоны поджелудочной железы, передней доли гипофиза и коры надпочечников.

Гормон поджелудочной железы инсулин снижает концентрацию глюкозы в крови и повышает ее концентрацию в клетках. По-видимому, он стимулирует также и запасание гликогена в печени. Кортикостерон, гормон коры надпочечников, и адреналин, вырабатываемый мозговым веществом надпочечников, воздействуют на метаболизм углеводов, стимулируя распад гликогена (главным образом в мышцах и печени) и синтез глюкозы (в печени).

Липиды.

Всасывание.

В кишечнике после переваривания жиров остаются главным образом свободные жирные кислоты с небольшой примесью холестерина и лецитина и следами жирорастворимых витаминов. Все эти вещества очень тонко диспергированы благодаря эмульгирующему и солюбилизирующему действию солей желчных кислот. Солюбилизирующее действие обычно связывают с образованием нестойких химических соединений между жирными кислотами и солями желчных кислот. Эти комплексы проникают в клетки эпителия тонкого кишечника и здесь распадаются на жирные кислоты и соли желчных кислот. Последние переносятся в печень и вновь секретируются с желчью, а жирные кислоты вступают в соединение с глицерином или холестерином. Образовавшиеся реконструированные жиры поступают в лимфатические сосуды брыжейки в форме млечного сока, т.н. «хилуса». Из сосудов брыжейки хилус по лимфатической системе через грудной проток поступает в кровеносную систему.

После переваривания пищи содержание липидов в крови возрастает приблизительно от 500 мг (уровень при голодании) до 1000 мг на 100 мл плазмы. Присутствующие в крови липиды представляют собой смесь жирных кислот, нейтральных жиров, фосфолипидов (лецитина и кефалина), холестерина и эфиров холестерина.

Распределение.

Кровь доставляет липиды в разные ткани тела и прежде всего в печень. Печень обладает способностью модифицировать поступающие в нее жирные кислоты. Это особенно выражено у видов, запасающих жиры с высоким содержанием насыщенных или, наоборот, ненасыщенных жирных кислот: в печени этих животных соотношение насыщенных и ненасыщенных кислот изменяется таким образом, что отлагающийся жир по своему составу соответствует жиру, свойственному данному организму.

Жиры в печени либо используются для получения энергии, либо переходят в кровь и доставляются ею в разные ткани. Здесь они могут включаться в структурные элементы тканей, но большая их часть отлагается в жировых депо, где они хранятся до тех пор, пока не возникнет потребность в энергии; тогда они снова переносятся в печень и подвергаются здесь окислению.

Метаболизм липидов, как и углеводов, регулируется гомеостатически. Механизмы гомеостаза, воздействующие на липидный и углеводный обмен, видимо, тесно связаны, поскольку при замедлении метаболизма углеводов усиливается метаболизм липидов, и наоборот.

Превращения и использование.

Четырехуглеродные кислоты – ацетоуксусная (продукт конденсации двух ацетатных единиц) и b-гидроксимасляная – и трехуглеродное соединение ацетон, образующийся при отщеплении одного атома углерода от ацетоуксусной кислоты, известны под общим названием кетоновых (ацетоновых) тел. В норме кетоновые тела присутствуют в крови в небольших количествах. Избыточное их образование при тяжелом диабете ведет к повышению их содержания в крови (кетонемия) и в моче (кетонурия) – это состояние обозначают термином «кетоз».

Белки.

Всасывание.

При переваривании белков пищеварительными ферментами образуется смесь из аминокислот и небольших пептидов, содержащих от двух до десяти остатков аминокислот. Эти продукты всасываются слизистой кишечника, и здесь гидролиз завершается – пептиды также распадаются до аминокислот. Поступившие в кровь аминокислоты смешиваются с находящимися здесь такими же аминокислотами. В крови содержится смесь из аминокислот, поступивших из кишечника, образовавшихся при распаде тканевых белков и синтезированных организмом заново.

Синтез.

В тканях непрерывно идет распад белков и их новообразование. Содержащиеся в крови аминокислоты избирательно поглощаются тканями как исходный материал для построения белков, а из тканей в кровь поступают другие аминокислоты. Синтезу и распаду подвергаются не только структурные белки, но и белки плазмы крови, а также белковые гормоны и ферменты.

Во взрослом организме аминокислоты или белки практически не запасаются, поэтому удаление аминокислот из крови происходит с такой же скоростью, как и их поступление из тканей в кровь. В растущем организме формируются новые ткани, и на этот процесс расходуется больше аминокислот, чем поступает в кровь за счет распада тканевых белков.

Печень участвует в метаболизме белков самым активным образом. Здесь синтезируются белки плазмы крови – альбумины и глобулины – а также собственные ферменты печени. Так, при потере плазменных белков содержание альбумина в плазме восстанавливается – за счет интенсивного синтеза – довольно быстро. Аминокислоты в печени используются не только для образования белков, но подвергаются также расщеплению, в ходе которого извлекается заключенная в них энергия.

Превращения и использование.

Если аминокислоты используются в качестве источника энергии, то отщепляемая от них аминогруппа (–NH2) направляется на образование мочевины, а не содержащий азота остаток молекулы окисляется приблизительно так же, как глюкоза или жирные кислоты.

Так называемый «орнитиновый цикл» описывает, как происходит превращение аммиака в мочевину. В этом цикле аминогруппа, отщепившаяся от аминокислоты в форме аммиака, присоединяется вместе с диоксидом углерода к молекуле орнитина с образованием цитруллина. Цитруллин присоединяет второй атом азота, на этот раз от аспарагиновой кислоты, и превращается в аргинин. Далее аргинин подвергается гидролизу с образованием мочевины и орнитина. Орнитин может теперь вновь вступить в цикл, а мочевина выводится из организма через почки как один из конечных продуктов метаболизма.
См. также ГОРМОНЫ; ФЕРМЕНТЫ; ЖИРЫ И МАСЛА; НУКЛЕИНОВЫЕ КИСЛОТЫ; БЕЛКИ; ВИТАМИНЫ.

Правда и заблуждения о метаболизме — Wonderzine

Иногда ускоренный метаболизм появляется при нарушениях гормонального статуса и может привести к проблемам формирования костей и мышц у детей и подростков, ослаблению иммунитета, приостановке роста, нарушениям менструального цикла, тахикардии и анемии. Некоторые болезни, например ихтиоз, также сопровождаются ускоренным обменом веществ: о связанных с этим сложностях рассказывала наша героиня. В свою очередь, слишком медленный обмен приводит к чрезмерному накоплению жировых отложений и возникновению ожирения, что может повышать риск сердечных заболеваний, повышенного артериального давления и сахарного диабета.

Обмен веществ замедляется и с возрастом: по словам Леонида Остапенко, в среднем на 5 % за каждые десять лет, прожитые после 30–40 (впрочем, это очень приблизительные, усреднённые оценки). Основные причины — изменения гормонального статуса, а также пониженная подвижность и уменьшение массы мышц. Такая стрессовая ситуация, как беременность и роды, тоже может привести к изменениям в базальном обмене. Ранние сроки беременности медики называют анаболическим состоянием: материнский организм откладывает запасы питательных веществ для дальнейших потребностей — как своих, так и плода. А на поздних сроках включается катаболическое состояние: чтобы плод нормально развивался, повышается уровень глюкозы и жирных кислот в крови.

После родов некоторые не могут сбросить несколько килограммов так же легко, как раньше, а другие, наоборот, становятся худыми. В идеале у совершенно здорового человека, живущего в благоприятной среде, после беременности организм должен вернуться к прежнему равновесию. В реальности так происходит не всегда — эндокринная система часто испытывает стресс, подобный удару молотка по часам: вроде все шестерёнки на месте, но часы спешат или отстают. Гормональные сдвиги после родов могут проявляться в виде тиреоидита (воспаления щитовидки), синдрома доминирования эстрогенов, когда их слишком много в организме, или синдрома адреналиновой усталости, при котором надпочечники вырабатывают слишком много адреналина и мало кортизола. Всё это отражается и на настроении, и на склонности легко поправляться или сбрасывать вес. К сожалению, с точностью предсказать, как изменится гормональный баланс и обмен веществ после родов, невозможно.

Названы 11 продуктов, которые помогут ускорить метаболизм

МОСКВА, 31 янв — ПРАЙМ. Немецкие диетологи перечислили 11 продуктов, употребление которых помогает ускорить обмен веществ. Об этом написало издание Freundin. 

Метаболизм, или обмен веществ — это система химических реакций, протекающих в организме в целях получения калорий из потребляемой пищи и обеспечения организма энергией. Это как «печь», сжигающая калории. Чем она мощнее, тем меньше риск ожирения.  Именно поэтому скорость обмена веществ волнует всех желающих стать стройнее. 

Диетолог назвала блюдо, которое нельзя есть на завтрак

В процессе похудения имеет значение реакция организма на употребление пищи в избыточном количестве. У части людей обмен веществ увеличивается существенно, у других же — совсем немного. Практическое значение имеет именно реакция тела на избыток калорий. Поэтому при медленном метаболизме поступившая еда трансформируется в энергию менее эффективно, что приводит к накоплению жира. При быстром метаболизме процесс преобразования еды в энергию более эффективен, вся еда усваивается, а риск отложения запасов минимален.

Диетологи подчеркнули, что основными способами ускорения обмена веществ являются регулярные физические нагрузки, употребление здоровой пищи, содержащей белок, витамины и микроэлементы, достаточный питьевой режим, минимизация стрессов и здоровый продолжительный сон.

Тем не менее, они посоветовали регулярно употреблять следующие 11 продуктов тем, кто хотел бы «разогнать» свой метаболизм: 

БРОККОЛИ

Данный сорт капусты содержит много кальция и витамина C. Кроме того, благодаря употреблению брокколи из организма быстрее выводится лишняя жидкость.

БРЮССЕЛЬСКАЯ КАПУСТА

Брюссельская капуста обладает свойствами, схожими с брокколи. Плюс к этому она содержит серу, которая активирует защищающие печень ферменты.

БЕЛОКОЧАННАЯ КАПУСТА

Белокочанная капуста богата витамином С и кальцием, содержит почти все витамины группы B, а по количеству витамина A и вовсе бьет рекорды. Сто граммов этого овоща способны вдвое покрыть суточную потребность в витамине А.

Помимо этого, капуста оказывает оздоравливающее и профилактическое действие против запоров, помогает снизить концентрацию холестерина и жира в крови и обеспечивает здоровую кишечную флору.

СПАРЖА

Диетологи называют спаржу «идеальным продуктом для очищения организма». Благодаря ей в организме повышается уровень антиоксиданта глутатиона.

ЛУК

Лук также вырабатывает глутатион, так как в нем содержатся сернистые аминокислоты.

ЦИКОРИЙ

Цикорий богат кальцием, калием, фосфором и инулином. Он помогает печени очищать кровь и избавлять организм от вредных веществ. Кроме того, цикорий оздоравливает кишечную флору и укрепляет иммунную систему.

ФЕНХЕЛЬ

В этом овоще содержится много клетчатки и фолиевой кислоты, отмечают диетологи.

ШПИНАТ

Как и фенхель, он богат фолиевой кислотой и клетчаткой.

ОГУРЦЫ

В огурцах много витаминов группы A, K и C. Кроме того, они содержат калий, кальций и магний, а также железо.

МОРКОВЬ

Как и огурцы, морковь богата витаминами А, К и С, калием, кальцием и магнием. Помимо этого, в ней много фосфора. И морковь, и огурцы положительно воздействуют на здоровье кожи и помогают выводить из организма токсины.

СВЕКЛА

Этот корнеплод особенно полезен для здоровья печени и желчного пузыря. Также свекла улучшает пищеварение и обладает мочегонным эффектом, в связи с чем ее регулярное употребление улучшает функцию почек и ускоряет вывод токсинов из организма.

Почему слоны не летают?

В июле 1931 года в малоизвестный немецкий журнал «Hilgardia» пришла рукопись швейцарского биолога Макса Кляйбера «Размеры тела и метаболизм». В ней ученый описал зависимость скорости обмена веществ животных разных размеров, от голубки до вола, и пришел к выводу, что метаболизм в состоянии покоя увеличивается пропорционально массе в степени 0,75. Статья была опубликована в начале 1932 года и быстро стала знаменитой. Ее результаты впоследствии проверяли на других выборках животных разных размеров, этим занимались как сам Кляйбер, так и другие исследователи. В итоге за прошедшие более чем три четверти века удалось откорректировать формулу и установить зависимость скорости метаболизма от массы для многих живых существ: позвоночных, беспозвоночных, растений. Вместе с Издательством Яндекса мы предлагаем вам вспомнить закон Кляйбера и создать свое фантастическое позвоночное животное.

Выберите понравившуюся группу животных и задайте массу (в случае водных животных максимально возможная масса — 30 тонн, размеры не слишком крупного кита), а мы покажем кто получился и как он называется.

А сейчас мы расскажем о законе Кляйбера немного подробнее.

Закон Кляйбера для млекопитающих описывается формулой P = 70m0,75, где P — скорость метаболизма в состоянии покоя (ее можно выразить в килокалориях в сутки), m — масса в килограммах, а 70 — коэффициент, характерный для млекопитающих. Много позже физиологи уточнили, что показатель степени для млекопитающих весом меньше 10 килограммов приблизительно равен 0,67. Для других групп животных коэффициенты могут отличаться довольно сильно, поскольку интенсивность метаболизма у них разная. А показатели степени в уравнении довольно близки по значениям, причем не только у позвоночных, но и у многих беспозвоночных и одноклеточных животных.

Впрочем, есть и исключения, например у растений или у фитопланктона уровень метаболизма меняется линейно по отношению к массе.

Исследователи предлагали разные объяснения такому постоянству. Согласно модели Веста-Брауна-Энквиста, скорость метаболизма определяется особенностями транспортной системы организма. Плотность сосудов пропорциональна массе тела, а количество капилляров пропорционально уровню метаболизма, и их размеры не зависят от массы тела. Часть исследователей считает, что скорость метаболизма определяется соотношением поверхности тела и его объема и показатель степени колеблется от 0,67 до единицы. Как бы то ни было, общепризнанного ответа, чем объясняется близкий показатель степени для разных организмов, пока нет.

Вот еще несколько ответов на вопросы, которые часто задают по поводу закона Кляйбера в интернете:

Да, конечно. Так как люди относятся к млекопитающим, для них верно соотношение P = 70m0,75. Например, у человека весом 70 килограммов базовая скорость метаболизма, если рассчитать ее по уравнению Кляйбера, составит 1694 килокалорий в сутки.

Ни для кого не новость, что нам нужна еда как источник энергии. В организме молекулы белков, жиров и углеводов участвуют в биохимических реакциях, которые и называются обменом веществ, или метаболизмом. Вещества расщепляются на компоненты, которые используются для клеточного дыхания, кровообращения, как строительный материал для роста клеток и в других необходимых для организма процессов. Теплокровные животные еще тратят энергию на поддержание постоянной температуры тела. Соответственно, для теплокровных животных (в том числе для человека) измеряют метаболизм в состоянии покоя (часто его называют основным, или базовым, метаболизмом) — расход энергии в единицу времени, а для холоднокровных животных рассчитывают стандартную скорость метаболизма и учитывают температуру, при которой велись измерения.

Это можно сделать с помощью многочисленных онлайн-калькуляторов, которые, в свою очередь, часто используют уравнения Харриса-Бенедикта или Миффлина — Сан Джеора. В 1919 году Харрис и Бенедикт вывели зависимость базового обмена веществ от пола, массы, роста и возраста человека. Если еще учесть уровень физической активности, можно узнать, сколько конкретному человеку надо потреблять калорий, чтобы держать массу тела на одном уровне. В 1990 году медики Миффлина и Сан Джеор предложили новый вариант уравнения — с учетом того, что образ жизни за 70 лет существенно изменился. Оно оказалось примерно на пять процентов точнее уравнения Харриса-Бенедикта.

У маленьких животных поверхность тела по отношению к общему объему тела больше, чем у крупных. Поэтому расход тепла (то есть энергии) у них выше. Из уравнения Кляйбера можно вывести и удельную скорость метаболизма: Р = Km-0,25, где К — аллометрический коэффициент. То есть чем больше размеры животного, тем медленнее у него метаболизм. Чтобы восполнить потерю энергии, маленьким животным приходится много есть. Например, мыши едят в день 10-15 процентов от своего веса, а взрослые слоны — 3-4 процента. Чтобы поддерживать интенсивный обмен веществ, маленьким животным приходится увеличивать и частоту сердцебиения. Так, у колибри пульс достигает 1500 ударов в минуту, у человека — 60-80 ударов, а у слонов — 30 ударов в минуту.

  • От способности скелета выдерживать нагрузки. У крупных животных кости больше и толще, чем у маленьких.
  • От способности мышц сердца выдерживать большую частоту сердцебиения. Как уже говорилось, у маленьких животных частота сердцебиения выше, чем у больших, и не может расти бесконечно. В среднем, у млекопитающих масса сердца составляет 0,6 процента от общей массы тела. У самого маленького млекопитающего, карликовой белозубки, масса сердца составляет 1,2 процента от общей массы тела.
  • От доступности пищи. Крупнейшие наземные животные — травоядные, при этом слоны иногда проходят в поисках пищи более ста километров в день, а самые большие водные животные — усатые киты — питаются богатым энергией и достаточно многочисленным планктоном.
  • Для теплокровных животных — от необходимости поддерживать постоянную температуру тела. На это требуется большой расход энергии.

Крупнейшее млекопитающее и крупнейшее из известных животное, жившее на планете, — синий кит. Он весит свыше ста тонн, его длина достигает 30 метров. Самый большой синий кит весил 190 тонн, самая длинная особь была 33 метра в длину. Самое большое из ныне живущих наземное животное — африканский саванный слон. Слоны весят 3-6 тонны, их рост составляет 2,5-3,2 метра. Крупнейший слон весил 10,4 тонны и был ростом 3,96 метра. Самое маленькое млекопитающее — карликовая белозубка, или этрусская землеройка, которая весит 1,6-2 грамма, а длина ее туловища (без хвоста) — около четырех сантиметров.

Крупнейшей живущей птицей является африканский страус, который в среднем весит свыше 100 килограммов и вырастает выше двух метров. Самцы могут весить до 157 килограммов и вырастать до 2,8 метров. Самая тяжелая летающая птица, большая дрофа, весит намного меньше, примерно 9-10 килограммов. Самцы-рекордсмены могут весить до 18 килограммов. Птица с наибольшим размахом крыльев (до 3,6 метра) — странствующий альбатрос. Самая маленькая птица, пчелиный колибри, размерами похожа на самое маленькое млекопитающее. Ее рост — 5,7 сантиметра, вес — 1,6 грамма.

Крупнейшие рептилии: гребнистый крокодил, который достигает шести метров в длину и весит 1-1,2 тонны. Самая большая ящерица — комодоский варан — вырастает до трех метров и весит до 70 килограммов. Крупнейшая змея — анаконда — может весить до 97,5 килограмма. Среди самых маленьких пресмыкающихся пальму первенства держат виргинские круглопалые гекконы, харагуанские сферо и несколько хамелеонов из рода брукезий. Они не превышают в длину 1,5-1,9 сантиметра. Самая маленькая змея — обитающая на Барбадосе тетрахейлостома карла, длина которой около шести сантиметров.

Самой большой в мире амфибией является китайская исполинская саламандра. Она достигает в длину 1,83 метра и весит до 64 килограммов. Лягушки-голиафы — крупнейшие бесхвостые земноводные —  вырастают до 40 сантиметров в длину и весят до 3,8 килограмма. А самой маленькой амфибией является одновременно самое маленькое известное позвоночное, лягушка Paedophryne amauensis из семейства микроквакш. Длина взрослой особи — 7-8 миллиметров. Самая маленькая саламандра — Thorius arboreus — достигает в длину двух сантиметров.

Екатерина Русакова

Его величество метаболизм. Вся правда об обмене веществ от тяжелоатлета

От ленивца до колибри

Обмен веществ – процесс, который объединяет все живые существа на нашей планете. Например, ленивец не только самый медлительный из животных, но и лидер по медленному темпу метаболизма. А самый быстрый обмен веществ у малютки колибри.

Биологи делят процессы обмена веществ на два типа. Первый – базальный – обеспечивает организму получение энергии, необходимой для поддержания жизнедеятельности в состоянии покоя (переваривание пищи, кровоснабжение, дыхание и т. п.). Он происходит даже во сне и потребляет до 70 % всех калорий, поступающих в организм. Второй тип – дополнительный – связан с любой активностью, отличной от состояния покоя.

Есть ли у человека инструменты, чтобы влиять на процесс обмена веществ? Ведь если метаболизм быстрый, то можно позволить себе есть больше, не беспокоясь о фигуре. Попробуем разобраться, от чего зависят эти процессы.

Во‑первых, возраст. Считается, что с годами метаболизм замедляется, поэтому всё сложнее оставаться в хорошей физической форме. Вроде бы и питание то же, что и раньше, а лишний вес будто прилипает к человеку. Обратимся к цифрам: по данным исследователя Эрика Полмана, начиная с 20 лет метаболизм снижается на 1–2 % каждые 10 лет. Если принимать за норму средний уровень базального метаболизма в 1200 ккал, то получим снижение на 12–24 ккал в день на каждое десятилетие. Выходит, что если даже повезёт дожить до 80 лет, то метаболизм снизится в среднем на 120 ккал в день.

Тогда почему с возрастом нам всё сложнее сохранять хорошую внешнюю композицию тела? Всё просто: в 40 лет мы уже не так активны, как в 30. Мотивации меньше, хочется большего комфорта, становится лень лишний раз двигаться, куда‑то бежать и что‑то делать.

Во‑вторых, питание. Бытует мнение, что если питаться часто, но понемногу, можно разогнать метаболизм в организме. Правда ли это? Исследования учёных пока не подтверждают эту теорию. Для метаболизма нет никакой разницы, съедите вы ваш дневной рацион маленькими порциями либо проглотите всё одним махом.

В‑третьих, тренировки. «Нужно просто больше тренироваться! – считают некоторые эксперты из мира тяжёлой атлетики. – Чем больше у тебя мышц, тем быстрее метаболизм!» Отнюдь. Лишь самые экстремальные случаи набора мышц могут заметно ускорить метаболизм. Давайте снова обратимся к цифрам: набор каждых 2 кг мышц увеличивает обмен веществ в состоянии покоя всего на 30 ккал в день. А дополнительный расход на восстановление после силовой тренировки занимает примерно 100–150 ккал в сутки, что эквивалентно паре съеденных яблок.

 

Борис Ховрах / Фото: личный архив

Что такое метаболизм?

Метаболизм — это термин, который используется для описания всех химических реакций, участвующих в поддержании жизненного состояния клеток и организма. Обмен веществ можно условно разделить на две категории:

  • Катаболизм — распад молекул для получения энергии
  • Анаболизм — синтез всех соединений, необходимых клеткам

Метаболизм тесно связан с питанием и доступностью питательных веществ.Биоэнергетика — это термин, который описывает биохимические или метаболические пути, с помощью которых клетка в конечном итоге получает энергию. Формирование энергии — один из жизненно важных компонентов обмена веществ.

Изображение предоставлено: VectorMine / Shutterstock.com

Питание, обмен веществ и энергия

Питание — это ключ к обмену веществ. Пути метаболизма зависят от питательных веществ, которые они расщепляют, чтобы произвести энергию. Эта энергия, в свою очередь, требуется организму для синтеза таких молекул, как новые белки и нуклеиновые кислоты (ДНК, РНК).

Питательные вещества, связанные с метаболизмом, включают такие факторы, как потребности организма в различных веществах, индивидуальные функции в организме, необходимое количество и уровень, ниже которого ухудшается состояние здоровья.

Основные питательные вещества поставляют энергию (калории) и поставляют необходимые химические вещества, которые сам организм не может синтезировать. Пища содержит множество веществ, которые необходимы для построения, содержания и восстановления тканей тела, а также для его эффективного функционирования.

Диета нуждается в основных питательных веществах, таких как углерод, водород, кислород, азот, фосфор, сера и около 20 других неорганических элементов. Основные элементы представлены углеводами, липидами и белком. Кроме того, необходимы витамины, минералы и вода.

Углеводы в обмене веществ

Продукты питания содержат углеводы в трех формах: крахмал, сахар и целлюлозу (клетчатку). Крахмал и сахар являются основными и необходимыми источниками энергии для человека. Волокна увеличивают объем рациона.

Ткани организма зависят от глюкозы во всех сферах деятельности. Углеводы и сахара производят глюкозу в результате пищеварения или метаболизма.

Общая реакция горения глюкозы записывается как:

C 6 H 12 O 6 + 6 O 2 ——> 6 CO 2 + 6 H 2 O + энергия

Большинство людей потребляют около половины своего рациона в виде углеводов. Это происходит из таких продуктов, как рис, пшеница, хлеб, картофель и макаронные изделия.

Белки в обмене веществ

Белки являются основными строителями тканей в организме. Они являются частью каждой клетки тела. Белки помогают в структуре клеток, функциях, образовании гемоглобина для переноса кислорода, ферментах для выполнения жизненно важных реакций и множестве других функций в организме. Белки также жизненно важны для снабжения азотом генетического материала ДНК и РНК и производства энергии.

Белки необходимы для питания, поскольку содержат аминокислоты. Из 20 или более аминокислот человеческий организм не может синтезировать 8, и они называются незаменимыми аминокислотами.

К незаменимым аминокислотам относятся:

  • Лизин
  • Триптофан
  • метионин
  • лейцин
  • Изолейцин
  • Фенилаланин
  • Валин
  • Треонин

Продукты с высоким содержанием белка — яйца, молоко, соевые бобы, мясо, овощи и зерновые.

Жир в обмене веществ

Жиры — это концентрированные источники энергии. Они производят вдвое больше энергии, чем углеводы или белки, в пересчете на вес.

Функции жиров включают:

  • Помогает формировать клеточную структуру;
  • Образует защитную подушку и изоляцию вокруг жизненно важных органов;
  • Способствует усвоению жирорастворимых витаминов,
  • Обеспечение резервного хранилища энергии

Незаменимые жирные кислоты включают ненасыщенные жирные кислоты, такие как линолевая, линоленовая и арахидоновая кислоты. Их нужно принимать с пищей. Насыщенные жиры, наряду с холестерином, участвуют в артериосклерозе и сердечных заболеваниях.

Минералы и витамины в обмене веществ

Минералы, содержащиеся в пищевых продуктах, не вносят прямого вклада в энергетические потребности, но важны как регуляторы организма и играют роль в метаболических путях организма. В организме человека содержится более 50 элементов. Было обнаружено, что незаменимыми являются около 25 элементов, а это означает, что их дефицит вызывает определенные симптомы дефицита.

Важные минералы включают:

  • Кальций
  • фосфор
  • Утюг
  • Натрий
  • Калий
  • Хлорид-ионы
  • Медь
  • Кобальт
  • Марганец
  • Цинк
  • Магний
  • Фтор
  • Йод

Витамины — это незаменимые органические соединения, которые человеческий организм не может синтезировать сам по себе, и поэтому они должны присутствовать в рационе.Витамины, особенно важные для обмена веществ, включают:

  • Витамин А
  • B2 (рибофлавин)
  • Ниацин или никотиновая кислота
  • Пантотеновая кислота

Изображение предоставлено: Siberian Art / Shutterstock.com

Метаболические пути

Химические реакции метаболизма организованы в метаболические пути. Они позволяют преобразовать основные химические вещества из пищи с помощью последовательности ферментов через ряд этапов в другое химическое вещество.

Ферменты имеют решающее значение для метаболизма, потому что они позволяют организмам вызывать желательные реакции, требующие энергии. Эти реакции также связаны с реакциями, высвобождающими энергию. Поскольку ферменты действуют как катализаторы, они позволяют этим реакциям протекать быстро и эффективно. Ферменты также позволяют регулировать метаболические пути в ответ на изменения в клеточной среде или сигналы от других клеток.

Список литературы

Дополнительная литература

Что такое метаболизм?

4 сентября 2015 г.

2 мин чтения


ДОБАВИТЬ ТЕМУ В ОПОВЕЩЕНИЯ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Получать электронное письмо, когда новые статьи публикуются на

Укажите свой адрес электронной почты, чтобы получать сообщения о публикации новых статей.Подписаться

Нам не удалось обработать ваш запрос. Пожалуйста, повторите попытку позже. Если у вас по-прежнему возникает эта проблема, обратитесь по адресу [email protected].

Вернуться в Healio

Метаболизм — это термин, обозначающий набор химических реакций, которые происходят в клетках живых организмов для поддержания жизни. Метаболические процессы приводят к росту и воспроизводству и позволяют живым организмам сохранять свои структуры и реагировать на окружающую среду.Все химические реакции, происходящие в живых организмах, от пищеварения до переноса веществ от клетки к клетке, могут быть частью метаболизма.

Промежуточный или промежуточный метаболизм — это термин, обозначающий перенос веществ в разные клетки и между ними.

Как это работает

Есть две категории метаболизма: катаболизм и анаболизм. Катаболизм — это распад органических веществ, а анаболизм использует энергию для создания компонентов клетки, таких как белки и нуклеиновые кислоты.

Химические реакции в метаболическом процессе организованы в метаболические пути, посредством которых одно химическое вещество за несколько этапов превращается в другое. Ферменты помогают в этом процессе, облегчая реакции и выступая в качестве катализаторов протекания реакций. Реакции не могли бы происходить без ферментов, которые отвечают на сигналы между клетками и регулируют метаболические пути. Скорость метаболизма называется скоростью метаболизма.

Метаболизм живого организма позволяет ему определять, какие вещества питательны и полезны, а какие ядовиты.

Некоторыми другими химическими веществами и частями организма, участвующими в метаболическом процессе, являются аминокислоты, белки, липиды, углеводы, нуклеотиды, коферменты, минералы и кофакторы.

Метаболический синдром

Метаболический синдром описывает группу черт и привычек, повышающих риск ишемической болезни сердца, диабета и инсульта. Факторы риска включают избыток жира в желудке, высокий уровень триглицеридов, низкий уровень холестерина ЛПВП, также известный как «хороший холестерин», высокое кровяное давление и высокий уровень сахара в крови натощак.

Эти факторы обычно встречаются вместе. Однако у пациентов должно быть как минимум три из них, чтобы диагностировать метаболический синдром.

У человека с метаболическим синдромом вдвое риск развития сердечных заболеваний и в пять раз выше вероятность диагностировать диабет, чем у человека без метаболического синдрома. Это становится все более распространенным явлением в результате роста показателей ожирения среди взрослых. Можно предотвратить или отсрочить метаболический синдром с помощью здоровой диеты и физических упражнений.

Дополнительную информацию можно найти на следующих сайтах:

http://bloodjournal.hemologylibrary.org/cgi/collection/gene_expression

http://www.nlm.nih.gov/medlineplus/ency/article/003706.htm

http://www.mayoclinic.com/health/metabolism/WT00006/

http://www.nature.com/jcbfm/index.html

http://www.nutritionandmetabolism.com/

http://www.hormone.org/Public/endocrinologist.cfm

http: // www.nlm.nih.gov/medlineplus/ency/article/002257.htm

http://www.ncbi.nlm.nih.gov/books/NBK22/?depth=10

http://endo.endojournals.org/

http://www.mayoclinic.org/medicalprofs/glucocorticoid-induced-diabetes.html

http://www.nlm.nih.gov/medlineplus/steroids.html

http://www.cancer.gov/cancertopics/understandingcancer/estrogenreceptors

http://www.ncbi.nlm.nih.gov/gene/2099

http://ghr.nlm.nih.gov/glossary=enzyme

http: // www.nlm.nih.gov/medlineplus/ency/article/002353.htm

http://www.nhlbi.nih.gov/health/health-topics/topics/ms


ДОБАВИТЬ ТЕМУ В ОПОВЕЩЕНИЯ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Получать электронное письмо, когда новые статьи публикуются на

Укажите свой адрес электронной почты, чтобы получать сообщения о публикации новых статей.

Подписаться

Нам не удалось обработать ваш запрос.Пожалуйста, повторите попытку позже. Если у вас по-прежнему возникает эта проблема, обратитесь по адресу [email protected].

Вернуться в Healio

Обзор метаболических реакций | Анатомия и физиология II

Цели обучения

К концу этого раздела вы сможете:

  • Опишите процесс расщепления полимеров на мономеры
  • Опишите процесс объединения мономеров в полимеры
  • Обсудить роль АТФ в метаболизме
  • Объяснение окислительно-восстановительных реакций
  • Опишите гормоны, регулирующие анаболические и катаболические реакции

В организме постоянно происходят обменные процессы. Метаболизм — это сумма всех химических реакций, которые участвуют в катаболизме и анаболизме. Реакции, управляющие расщеплением пищи для получения энергии, называются катаболическими реакциями. И наоборот, анаболические реакции используют энергию, производимую катаболическими реакциями, для синтеза более крупных молекул из более мелких, например, когда организм формирует белки, связывая аминокислоты. Оба набора реакций имеют решающее значение для поддержания жизни.

Поскольку катаболические реакции производят энергию, а анаболические реакции используют энергию, в идеале использование энергии должно уравновешивать производимую энергию.Если чистое изменение энергии положительное (катаболические реакции выделяют больше энергии, чем используют анаболические реакции), то организм накапливает избыточную энергию, создавая молекулы жира для длительного хранения. С другой стороны, если чистое изменение энергии отрицательное (катаболические реакции выделяют меньше энергии, чем используют анаболические реакции), организм использует накопленную энергию, чтобы компенсировать дефицит энергии, высвобождаемой катаболизмом.

Катаболические реакции

Катаболические реакции расщепляют большие органические молекулы на более мелкие, высвобождая энергию, содержащуюся в химических связях.Эти высвобождения энергии (преобразования) не эффективны на 100 процентов. Количество выделяемой энергии меньше общего количества, содержащегося в молекуле. Примерно 40 процентов энергии, выделяемой в результате катаболических реакций, напрямую передается высокоэнергетической молекуле аденозинтрифосфата (АТФ). АТФ, энергетическая валюта клеток, можно немедленно использовать для питания молекулярных машин, которые поддерживают функции клеток, тканей и органов. Это включает создание новой ткани и восстановление поврежденной ткани.АТФ также можно хранить для удовлетворения будущих потребностей в энергии. Остальные 60 процентов энергии, выделяемой в результате катаболических реакций, выделяется в виде тепла, которое поглощают ткани и жидкости организма.

Структурно молекулы АТФ состоят из аденина, рибозы и трех фосфатных групп. Химическая связь между второй и третьей фосфатными группами, называемая высокоэнергетической связью, представляет собой самый большой источник энергии в клетке. Это первая связь, которую разрушают катаболические ферменты, когда клеткам требуется энергия для работы.Продуктами этой реакции являются молекула аденозиндифосфата (АДФ) и одиночная фосфатная группа (P i ). АТФ, АДФ и P i постоянно проходят через реакции, которые создают АТФ и накапливают энергию, и реакции, которые разрушают АТФ и высвобождают энергию.

Рис. 1. Аденозинтрифосфат (АТФ) — это энергетическая молекула клетки. Во время катаболических реакций создается АТФ, и энергия сохраняется до тех пор, пока она не понадобится во время анаболических реакций.

Энергия АТФ управляет всеми функциями организма, такими как сокращение мышц, поддержание электрического потенциала нервных клеток и поглощение пищи в желудочно-кишечном тракте.Метаболические реакции, которые производят АТФ, происходят из разных источников.

Рис. 2. Во время катаболических реакций белки расщепляются на аминокислоты, липиды — на жирные кислоты, а полисахариды — на моносахариды. Эти строительные блоки затем используются для синтеза молекул в анаболических реакциях.

Из четырех основных макромолекулярных групп (углеводов, липидов, белков и нуклеиновых кислот), которые перерабатываются в процессе пищеварения, углеводы считаются наиболее распространенным источником энергии для питания организма.Они принимают форму сложных углеводов, полисахаридов, таких как крахмал и гликоген, или простых сахаров (моносахаридов), таких как глюкоза и фруктоза. Катаболизм сахара расщепляет полисахариды на отдельные моносахариды. Среди моносахаридов глюкоза является наиболее распространенным топливом для производства АТФ в клетках, и поэтому существует ряд механизмов эндокринного контроля, регулирующих концентрацию глюкозы в кровотоке. Избыточная глюкоза либо хранится в качестве запаса энергии в печени и скелетных мышцах в виде сложного полимерного гликогена, либо превращается в жир (триглицерид) в жировых клетках (адипоцитах).

Среди липидов (жиров) триглицериды чаще всего используются для получения энергии посредством метаболического процесса, называемого β-окислением. Около половины лишнего жира хранится в адипоцитах, которые накапливаются в подкожной клетчатке под кожей, тогда как остальная часть хранится в адипоцитах в других тканях и органах.

Белки, которые представляют собой полимеры, можно разделить на их мономеры, отдельные аминокислоты. Аминокислоты можно использовать в качестве строительных блоков новых белков или далее расщеплять для производства АТФ.Когда человек хронически голодает, такое использование аминокислот для производства энергии может привести к истощению организма, поскольку расщепляется все больше и больше белков.

Нуклеиновые кислоты присутствуют в большинстве продуктов, которые вы едите. Во время пищеварения нуклеиновые кислоты, включая ДНК и различные РНК, распадаются на составляющие их нуклеотиды. Эти нуклеотиды легко абсорбируются и транспортируются по всему телу для использования отдельными клетками во время метаболизма нуклеиновых кислот.

Анаболические реакции

В отличие от катаболических реакций, анаболические реакции включают соединение более мелких молекул в более крупные.Анаболические реакции объединяют моносахариды с образованием полисахаридов, жирные кислоты с образованием триглицеридов, аминокислоты с образованием белков и нуклеотиды с образованием нуклеиновых кислот. Эти процессы требуют энергии в виде молекул АТФ, генерируемых катаболическими реакциями. Анаболические реакции, также называемые реакциями биосинтеза , создают новые молекулы, которые образуют новые клетки и ткани и оживляют органы.

Гормональная регуляция обмена веществ

Катаболические и анаболические гормоны в организме помогают регулировать метаболические процессы. Катаболические гормоны стимулируют расщепление молекул и выработку энергии. К ним относятся кортизол, глюкагон, адреналин / адреналин и цитокины. Все эти гормоны мобилизуются в определенное время для удовлетворения потребностей организма. Анаболические гормоны необходимы для синтеза молекул и включают гормон роста, инсулиноподобный фактор роста, инсулин, тестостерон и эстроген. В следующей таблице обобщены функции каждого из катаболических гормонов, а в следующей таблице обобщены функции каждого из них. анаболические гормоны.

Таблица 1. Катаболические гормоны
Гормон Функция
Кортизол Высвобождается из надпочечников в ответ на стресс; его основная роль заключается в повышении уровня глюкозы в крови путем глюконеогенеза (расщепления жиров и белков)
Глюкагон Высвобождается из альфа-клеток поджелудочной железы при голодании или когда организму требуется дополнительная энергия; стимулирует расщепление гликогена в печени, повышая уровень глюкозы в крови; его действие противоположно инсулину; глюкагон и инсулин являются частью системы отрицательной обратной связи, которая стабилизирует уровень глюкозы в крови
Адреналин / адреналин Высвобождается в ответ на активацию симпатической нервной системы; увеличивает частоту сердечных сокращений и сократимость сердца, сужает кровеносные сосуды, является бронходилататором, который открывает (расширяет) бронхи легких для увеличения объема воздуха в легких и стимулирует глюконеогенез
Таблица 2.Анаболические гормоны
Гормон Функция
Гормон роста (GH) Синтезируется и выделяется гипофизом; стимулирует рост клеток, тканей и костей
Инсулиноподобный фактор роста (IGF) Стимулирует рост мышц и костей, одновременно подавляя гибель клеток (апоптоз)
Инсулин Производится бета-клетками поджелудочной железы; играет важную роль в метаболизме углеводов и жиров, контролирует уровень глюкозы в крови и способствует усвоению глюкозы клетками организма; заставляет клетки мышц, жировой ткани и печени поглощать глюкозу из крови и хранить ее в печени и мышцах в виде глюкагона; его действие противоположно гликогену; глюкагон и инсулин являются частью системы отрицательной обратной связи, которая стабилизирует уровень глюкозы в крови
Тестостерон Производится семенниками у мужчин и яичниками у женщин; стимулирует увеличение мышечной массы и силы, а также рост и укрепление костей
Эстроген Производится в основном яичниками, а также печенью и надпочечниками; его анаболические функции включают ускорение метаболизма и отложение жира

Нарушения метаболических процессов: синдром Кушинга и болезнь Аддисона

Как и следовало ожидать от фундаментального физиологического процесса, такого как метаболизм, ошибки или сбои в метаболической обработке приводят к патофизиологии или, если не исправить, к болезненному состоянию.Метаболические заболевания чаще всего являются результатом неправильной работы белков или ферментов, которые имеют решающее значение для одного или нескольких метаболических путей. Нарушение функции белка или фермента может быть следствием генетического изменения или мутации. Однако нормально функционирующие белки и ферменты также могут иметь вредные эффекты, если их доступность не соответствует метаболическим потребностям. Например, чрезмерное производство гормона кортизола вызывает синдром Кушинга. Клинически синдром Кушинга характеризуется быстрым увеличением веса, особенно в области туловища и лица, депрессией и тревогой.Стоит упомянуть, что опухоли гипофиза, вырабатывающие адренокортикотропный гормон (АКТГ), который впоследствии стимулирует кору надпочечников высвобождать избыточное количество кортизола, имеют аналогичные эффекты. Этот косвенный механизм гиперпродукции кортизола называется болезнью Кушинга.

Пациенты с синдромом Кушинга могут иметь повышенный уровень глюкозы в крови и имеют повышенный риск ожирения. Они также показывают медленный рост, накопление жира между плечами, слабые мышцы, боли в костях (потому что кортизол заставляет белки расщепляться с образованием глюкозы посредством глюконеогенеза) и утомляемость.Другие симптомы включают чрезмерное потоотделение (гипергидроз), расширение капилляров и истончение кожи, что может привести к легким синякам. Все методы лечения синдрома Кушинга направлены на снижение чрезмерного уровня кортизола. В зависимости от причины избытка, лечение может быть таким простым, как прекращение использования мазей с кортизолом. В случае опухолей часто используется хирургическое вмешательство для удаления опухоли, вызывающей нарушение. Если операция нецелесообразна, лучевая терапия может использоваться для уменьшения размера опухоли или удаления частей коры надпочечников.Наконец, доступны лекарства, которые могут помочь регулировать количество кортизола.

Недостаточное производство кортизола также проблематично. Надпочечниковая недостаточность, или болезнь Аддисона, характеризуется снижением выработки кортизола надпочечниками. Это может быть следствием нарушения работы надпочечников — они не вырабатывают достаточного количества кортизола — или следствием снижения доступности АКТГ из гипофиза. Пациенты с болезнью Аддисона могут иметь низкое кровяное давление, бледность, крайнюю слабость, утомляемость, медленные или вялые движения, головокружение и тягу к соли из-за потери натрия и высокого уровня калия в крови (гиперкалиемия).Жертвы также могут страдать от потери аппетита, хронической диареи, рвоты, поражений во рту и неоднородного цвета кожи. Диагностика обычно включает анализы крови и визуализацию надпочечников и гипофиза. Лечение включает заместительную терапию кортизолом, которую, как правило, следует продолжать всю жизнь.

Реакции окисления-восстановления

Химические реакции, лежащие в основе метаболизма, включают перенос электронов от одного соединения к другому посредством процессов, катализируемых ферментами.Электроны в этих реакциях обычно исходят от атомов водорода, которые состоят из электрона и протона. Молекула отдает атом водорода в виде иона водорода (H + ) и электрона, разбивая молекулу на более мелкие части. Потеря электрона или окисление высвобождает небольшое количество энергии; и электрон, и энергия затем передаются другой молекуле в процессе восстановления или получения электрона. Эти две реакции всегда происходят вместе в реакции окисления-восстановления (также называемой окислительно-восстановительной реакцией) — когда электрон проходит между молекулами, донор окисляется, а реципиент восстанавливается.Реакции окисления-восстановления часто протекают последовательно, так что восстановленная молекула впоследствии окисляется, передавая не только только что полученный электрон, но и полученную энергию. По мере развития серии реакций накапливается энергия, которая используется для объединения P i и АДФ с образованием АТФ, высокоэнергетической молекулы, которую организм использует в качестве топлива.

Реакции окисления и восстановления катализируются ферментами, запускающими удаление атомов водорода. Коферменты работают с ферментами и принимают атомы водорода.Двумя наиболее распространенными коферментами окислительно-восстановительных реакций являются никотинамидадениндинуклеотид (NAD) и флавинадениндинуклеотид (FAD) . Их соответствующие восстановленные коферменты — это NADH и FADH 2 , которые являются энергосодержащими молекулами, используемыми для передачи энергии во время создания АТФ.

Обзор главы

Метаболизм — это сумма всех катаболических (расщепление) и анаболических (синтез) реакций в организме.Скорость метаболизма измеряет количество энергии, используемой для поддержания жизни. Организм должен потреблять достаточное количество пищи для поддержания скорости метаболизма, если он хочет выжить очень долго.

Катаболические реакции расщепляют более крупные молекулы, такие как углеводы, липиды и белки из принятой пищи, на составляющие более мелкие части. Они также включают расщепление АТФ, который высвобождает энергию, необходимую для метаболических процессов во всех клетках по всему телу.

Анаболические реакции, или биосинтетические реакции, синтезируют более крупные молекулы из более мелких составных частей, используя АТФ в качестве источника энергии для этих реакций.Анаболические реакции увеличивают костную и мышечную массу, а также создают новые белки, жиры и нуклеиновые кислоты. Реакции окисления-восстановления переносят электроны через молекулы, окисляя одну молекулу и восстанавливая другую, и собирая высвобождаемую энергию для преобразования P i и АДФ в АТФ. Ошибки в метаболизме изменяют переработку углеводов, липидов, белков и нуклеиновых кислот и могут привести к ряду болезненных состояний.

Самопроверка

Ответьте на вопросы ниже, чтобы увидеть, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе.

Вопросы о критическом мышлении

  1. Опишите, как можно изменить метаболизм.
  2. Опишите, как лечить болезнь Аддисона.

Показать ответы

  1. Увеличение или уменьшение мышечной массы приведет к увеличению или уменьшению метаболизма.
  2. Болезнь Аддисона характеризуется низким уровнем кортизола. Один из способов лечения болезни — дать пациенту кортизол.

Глоссарий

анаболических гормонов: гормонов, которые стимулируют синтез новых, более крупных молекул

анаболических реакций: реакций, которые превращают молекулы меньшего размера в молекулы большего размера

реакций биосинтеза: реакций, которые создают новые молекулы, также называемые анаболическими реакциями

катаболических гормонов: гормонов, которые стимулируют распад более крупных молекул

катаболических реакций: реакций, при которых более крупные молекулы расщепляются на составные части

FADH 2 : высокоэнергетическая молекула, необходимая для гликолиза

флавинадениндинуклеотид (FAD): кофермент , используемый для производства FADH 2

обмен веществ: сумма всех катаболических и анаболических реакций, происходящих в организме

NADH: высокоэнергетическая молекула, необходимая для гликолиза

никотинамидадениндинуклеотид (НАД): кофермент , используемый для производства НАДН

окисление: потеря электрона

реакция окисления-восстановления: (также окислительно-восстановительная реакция) пара реакций, в которых электрон передается от одной молекулы к другой, окисляя одну и восстанавливая другую

редукция: накопление электрона

4.1: Обзор метаболизма — Medicine LibreTexts

Навыки для развития

  • Кратко опишите, как энергия из питательных веществ, дающих энергию, получается и используется, а также как и где она сохраняется в организме для дальнейшего использования.
  • Объясните роль энергии в процессе построения тканей и органов.

В различных главах этого текста мы исследовали метаболизм углеводов, липидов и белков. В следующем разделе мы соберем эту информацию, чтобы получить четкое представление о важности метаболизма в питании человека.

Метаболизм определяется как сумма всех химических реакций, необходимых для поддержания клеточной функции и, следовательно, жизни организма. Метаболизм подразделяется на катаболизм, относящийся ко всем метаболическим процессам, участвующим в распаде молекул, или анаболизм, который включает все метаболические процессы, участвующие в создании более крупных молекул. Как правило, катаболические процессы высвобождают энергию, а анаболические процессы потребляют энергию. Общие цели метаболизма — передача энергии и транспортировка вещества.Энергия преобразуется из пищевых макроэлементов в клеточную энергию, которая используется для выполнения клеточной работы. Метаболизм преобразует макроэлементы в вещества, которые клетка может использовать для роста и воспроизводства, а также в продукты жизнедеятельности.

В главе 5 вы узнали, что ферменты — это белки и что их задача — катализировать химические реакции. (Напомним, что слово «катализирует» означает ускорение химической реакции и уменьшение энергии, необходимой для завершения химической реакции, без использования катализатора в реакции.) Без ферментов химические реакции не происходили бы с достаточно высокой скоростью и потребляли бы слишком много энергии для существования жизни. Метаболический путь — это серия ферментативных реакций, которые преобразуют исходный материал (известный как субстрат) в промежуточные продукты, которые являются субстратами для следующих ферментативных реакций в этом пути, пока, наконец, не будет синтезирован конечный продукт последней ферментативной реакцией. в пути. Некоторые метаболические пути сложны и включают множество ферментативных реакций, а другие включают лишь несколько химических реакций.

Для обеспечения клеточной эффективности метаболические пути, участвующие в катаболизме и анаболизме, регулируются согласованно в зависимости от энергетического статуса, гормонов, уровней субстрата и конечных продуктов. Согласованная регуляция метаболических путей предотвращает неэффективное построение клетками молекулы, когда она уже доступна. Подобно тому, как было бы неэффективно строить стену в то время, когда она разрушается, для клетки неэффективно с метаболической точки зрения синтезировать жирные кислоты и одновременно разрушать их.

Катаболизм пищевых молекул начинается, когда пища попадает в рот, поскольку фермент слюнной амилазы инициирует расщепление углеводов. Весь процесс пищеварения превращает крупные полимеры в пище в мономеры, которые могут усваиваться. Углеводы расщепляются на моносахариды, липиды — на жирные кислоты, а белки — на аминокислоты. Эти мономеры всасываются в кровоток либо напрямую, как в случае с моносахаридами и аминокислотами, либо переупаковываются в кишечных клетках для транспортировки непрямым путем через лимфатические сосуды, как в случае с жирными кислотами и другими жирорастворимыми молекулами.После всасывания кровь переносит питательные вещества к клеткам. Клетки, которым требуется энергия или строительные блоки, забирают питательные вещества из крови и перерабатывают их катаболическим или анаболическим путем. Системам органов тела требуется топливо и строительные блоки для выполнения многих функций организма, таких как переваривание, всасывание, дыхание, перекачивание крови, транспортировка питательных веществ внутрь и отходы, поддержание температуры тела и создание новых клеток. Моносахариды, липиды расщепляются на жирные кислоты, а белки — на аминокислоты.Эти мономеры всасываются в кровоток либо напрямую, как в случае с моносахаридами и аминокислотами, либо переупаковываются в кишечных клетках для транспортировки непрямым путем через лимфатические сосуды, как в случае с жирными кислотами и другими жирорастворимыми молекулами. После всасывания кровь переносит питательные вещества к клеткам. Клетки, которым требуется энергия или строительные блоки, забирают питательные вещества из крови и перерабатывают их катаболическим или анаболическим путем. Системам органов тела требуется топливо и строительные блоки для выполнения многих функций организма, таких как переваривание, поглощение, дыхание, перекачивание крови, транспортировка питательных веществ внутрь и отходы, поддержание температуры тела и создание новых клеток.

Рисунок \ (\ PageIndex {1} \) : Метаболизм подразделяется на метаболические пути, которые разрушают молекулы, выделяющие энергию (катаболизм), и молекулы, которые потребляют энергию, создавая более крупные молекулы (анаболизм).

Энергетический метаболизм более конкретно относится к метаболическим путям, которые высвобождают или хранят энергию. Некоторые из них являются катаболическими путями, такими как гликолиз (расщепление глюкозы), β-окисление (расщепление жирных кислот) и катаболизм аминокислот.Другие являются анаболическими путями и включают те, которые участвуют в накоплении избыточной энергии (например, гликогениз) и синтезе триглицеридов (липогенез). В таблице \ (\ PageIndex {1} \) приведены некоторые катаболические и анаболические пути и их функции в энергетическом обмене.

Таблица \ (\ PageIndex {1} \) : Метаболические пути
Катаболические пути Функция Анаболические пути Функция
Гликолиз Распад глюкозы Глюконеогенез Синтезировать глюкозу
Гликогенолиз Распад гликогена Гликогенез Синтезировать гликоген
β-окисление Жирнокислотный распад Липогенез Синтезировать триглицериды
Протеолиз Расщепление белков до аминокислот Синтез аминокислот Синтезировать аминокислоты

Катаболизм: Разрушение

Все клетки настроены на свой энергетический баланс.Когда уровень энергии высокий, клетки строят молекулы, а когда уровень энергии низкий, запускаются катаболические пути для производства энергии. Глюкоза является предпочтительным источником энергии для большинства тканей, но жирные кислоты и аминокислоты также могут катаболизироваться до молекулы клеточной энергии, АТФ. Катаболизм питательных веществ в энергию можно разделить на три стадии, каждая из которых включает индивидуальные метаболические пути. Три стадии расщепления питательных веществ позволяют клеткам переоценить свои потребности в энергии, поскольку конечные продукты каждого пути могут быть далее переработаны в энергию или направлены на анаболические пути.Кроме того, промежуточные продукты метаболических путей иногда могут быть переведены на анаболические пути после удовлетворения потребностей клетки в энергии. Три стадии расщепления питательных веществ следующие:

Распад глюкозы начинается с гликолиза, который представляет собой десятиэтапный метаболический путь, дающий два АТФ на молекулу глюкозы; гликолиз происходит в цитозоле и не требует кислорода. Помимо АТФ, конечные продукты гликолиза включают две трехуглеродные молекулы, называемые пируватом.У пирувата есть несколько метаболических судеб. Во-первых, если кислорода недостаточно, он превращается в лактат, а затем отправляется в печень. Во-вторых, если кислорода достаточно и клетке нужна энергия, она направляется в митохондрии и входит в цикл лимонной кислоты (или цикл Кори или цикл Кребса), или три, он может быть преобразован в другие молекулы (анаболизм).

Пируват, который транспортируется в митохондрии, отщепляет один из атомов углерода, образуя ацетил-КоА. Ацетил-КоА, двухуглеродная молекула, общая для метаболизма глюкозы, липидов и белков, вступает во вторую стадию энергетического метаболизма, цикл лимонной кислоты.Это необратимый процесс. Распад жирных кислот начинается с катаболического пути, известного как β-окисление, которое происходит в митохондриях. В этом катаболическом пути четыре ферментативных этапа последовательно удаляют двухуглеродные молекулы из длинных цепей жирных кислот, давая молекулы ацетил-КоА. В случае аминокислот после удаления азота (дезаминирования) из аминокислоты оставшийся углеродный скелет может быть ферментативно преобразован в ацетил-КоА или какой-либо другой промежуточный продукт цикла лимонной кислоты.

В лимонной кислоте цикл ацетил-КоА соединен с четырехуглеродной молекулой. В этом многоступенчатом пути два атома углерода теряются при образовании двух молекул углекислого газа. Энергия, полученная при разрыве химических связей в цикле лимонной кислоты, преобразуется в еще две молекулы АТФ (или их эквиваленты) и высокоэнергетические электроны, которые переносятся молекулами, никотинамидадениндинуклеотид (NADH) и флавинадениндинуклеотид (FADH ). 2 ). НАДН и ФАДН 2 переносят электроны (водород) на внутреннюю мембрану митохондрий, где происходит третья стадия синтеза энергии, в так называемой цепи переноса электронов.В этом метаболическом пути происходит последовательный перенос электронов между несколькими белками и синтезируется АТФ. Также образуется вода.

Весь процесс катаболизма питательных веществ химически подобен горению, поскольку при сжигании молекул углерода образуются углекислый газ, вода и тепло. Однако многие химические реакции катаболизма питательных веществ замедляют распад молекул углерода, так что большая часть энергии может быть захвачена, а не преобразована в тепло и свет. Полный катаболизм питательных веществ эффективен на 30-40%, поэтому часть энергии выделяется в виде тепла.Тепло является жизненно важным продуктом катаболизма питательных веществ и участвует в поддержании температуры тела. Если бы клетки были слишком эффективны в преобразовании энергии питательных веществ в АТФ, люди не выдержали бы до следующего приема пищи, так как они бы умерли от переохлаждения.

Мы измеряем энергию в калориях, которые представляют собой количество энергии, высвобождаемой для подъема одного грамма воды на один градус Цельсия. Пищевые калории измеряются в ккал, калориях или 1000 калориях. При сжигании углеводов выделяется 4 ккал / г .; белки производят 4 ккал / г; жир производит 9 ккал / г; а алкоголь производит 7 ккал / г.

Из некоторых аминокислот удаляется азот, а затем они попадают в цикл лимонной кислоты для производства энергии. Азот включается в мочевину, а затем удаляется с мочой. Углеродный скелет превращается в пируват или напрямую входит в цикл лимонной кислоты. Эти аминокислоты называются глюконеогенными, потому что они могут использоваться для производства глюкозы. Аминокислоты, которые дезаминируются и становятся ацетил-КоА, называются кетогенными аминокислотами и никогда не могут стать глюкозой.

Жирные кислоты никогда не превращаются в глюкозу, но являются важным источником энергии.Они разбиваются на две углеродные единицы в процессе, называемом бета-окислением, и входят в цикл лимонной кислоты как ацетил-КоА. В присутствии глюкозы эти две углеродные единицы входят в цикл лимонной кислоты и сжигаются, чтобы получить энергию (АТФ) и произвести побочный продукт CO 2 . Если уровень глюкозы низкий, образуются кетоны. Кетоновые тела можно сжигать для получения энергии. Мозг может использовать кетоны.

Анаболизм: Здание

Энергия, выделяемая катаболическими путями, поддерживает анаболические пути построения макромолекул, таких как белки РНК и ДНК, и даже целых новых клеток и тканей.Анаболические пути необходимы для создания новой ткани, такой как мышцы, после длительных упражнений или ремоделирования костной ткани, процесса, включающего как катаболические, так и анаболические пути. Анаболические пути также создают молекулы-накопители энергии, такие как гликоген и триглицериды. Промежуточные звенья катаболических путей энергетического метаболизма иногда отвлекаются от производства АТФ и вместо этого используются в качестве строительных блоков. Это происходит, когда клетка находится в положительном энергетическом балансе. Например, промежуточный продукт цикла лимонной кислоты, α-кетоглутарат, может быть анаболически переработан в аминокислоты глутамат или глутамин, если они необходимы.Напомним, что человеческий организм способен синтезировать одиннадцать из двадцати аминокислот, входящих в состав белков. Все метаболические пути синтеза аминокислот ингибируются конкретной аминокислотой, которая является конечным продуктом данного пути. Таким образом, если в клетке достаточно глутамина, он отключает его синтез.

Анаболические пути регулируются их конечными продуктами, но тем более энергетическим состоянием клетки. Когда энергии достаточно, по мере необходимости будут построены более крупные молекулы, такие как белок, РНК и ДНК.В качестве альтернативы, когда энергии недостаточно, белки и другие молекулы будут разрушаться и катаболизироваться с высвобождением энергии. Яркий пример этого — у детей с маразмом. У этих детей серьезно нарушены функции организма, что часто приводит к смерти от инфекции. Дети с маразмом страдают от голода по калориям и белку, которые необходимы для выработки энергии и создания макромолекул. Отрицательный энергетический баланс у детей, страдающих маразмом, приводит к разрушению мышечной ткани и тканей других органов в попытке выжить в организме.Из-за значительного уменьшения мышечной ткани дети с маразмом выглядят истощенными или «истощенными мышцами».

Рисунок \ (\ PageIndex {2} \): Метаболический путь глюконеогенеза

В гораздо менее серьезном примере у человека также наблюдается отрицательный энергетический баланс между приемами пищи. За это время уровень глюкозы в крови начинает падать. Чтобы восстановить нормальный уровень глюкозы в крови, стимулируется анаболический путь, называемый глюконеогенезом.Глюконеогенез — это процесс построения молекул глюкозы из определенных аминокислот, который происходит в основном в печени (рисунок \ (\ PageIndex {2} \)). Печень экспортирует синтезированную глюкозу в кровь для использования другими тканями.

Накопитель энергии

Напротив, в «сытом» состоянии (когда уровни энергии высоки) будет накапливаться дополнительная энергия из питательных веществ. Глюкоза может храниться только в мышцах и тканях печени. В этих тканях он хранится в виде гликогена, сильно разветвленной макромолекулы, состоящей из тысяч мономеров глюкозы, скрепленных химическими связями.Мономеры глюкозы соединяются анаболическим путем, называемым гликогенезом. На каждую хранящуюся молекулу глюкозы используется одна молекула АТФ. Следовательно, для хранения энергии требуется энергия. Уровни гликогена быстро достигают своего физиологического предела, и когда это происходит, избыток глюкозы превращается в жир. Клетка с положительным энергетическим балансом обнаруживает высокую концентрацию АТФ, а также ацетил-КоА, продуцируемого катаболическими путями. В ответ катаболизм отключается и включается синтез триглицеридов, который происходит посредством анаболического пути, называемого липогенезом.Новообразованные триглицериды транспортируются в жировые клетки, называемые адипоцитами. Жир является лучшей альтернативой гликогену для хранения энергии, поскольку он более компактен (на единицу энергии) и, в отличие от гликогена, организм не накапливает воду вместе с жиром. Вода весит очень много, и увеличение запасов гликогена, которые сопровождаются водой, резко увеличивает массу тела. Когда в организме положительный энергетический баланс, избыток углеводов, липидов и белков превращается в жир.

Основные выводы

  • Общими целями метаболизма являются передача энергии и транспортировка вещества. Метаболизм определяется как сумма всех химических реакций, необходимых для поддержания клеточной функции, и подразделяется на катаболизм (относящийся ко всем метаболическим процессам, участвующим в распаде молекул) или анаболизм (который включает все метаболические процессы, участвующие в создании более крупных молекул). Как правило, катаболические процессы высвобождают энергию, а анаболические процессы потребляют энергию.
  • Метаболический путь — это серия ферментативных стадий, которые преобразуют субстрат (исходный материал) в промежуточные продукты, которые являются субстратами для протекающих ферментативных реакций, пока, наконец, не будет синтезирован конечный продукт в последней ферментативной реакции в этом пути.
  • Системам органов тела требуется топливо и строительные блоки для переваривания, поглощения, дыхания, перекачивания крови, транспортировки питательных веществ внутрь и выведения отходов, поддержания температуры тела и создания новых клеток среди множества других функций.
  • Когда уровни энергии высоки, клетки строят молекулы, а когда уровни энергии низкие, катаболические пути стимулируются для высвобождения энергии.
  • Энергия, выделяемая катаболическими путями, поддерживает анаболические пути построения более крупных макромолекул.
  • В «сытом» состоянии (когда уровни энергии высоки) дополнительное питательное топливо будет храниться в виде гликогена или триглицеридов.

Обсуждение стартеров

  1. Обсудите практичность хранения энергии в ранних человеческих цивилизациях и последствия этих метаболических процессов в современном мире.Вернитесь к истории индейцев пима в главе 1 «Питание и вы» и к концепции «гена бережливости».
  2. Может ли человек с избыточным весом винить свой лишний вес в замедленном метаболизме?

Человеческий метаболизм: факты и общая информация: Disabled World

Дата обновления / пересмотра: 21.03.2019
Автор: Disabled World — Контактное лицо: Disabled-World.com

Сводка *: Метаболизм — это термин, используемый для обозначения расщепление пищи и ее последующее преобразование в энергию, необходимую организму человека.

Основной документ

Определение метаболизма

Метаболизм определяется как набор поддерживающих жизнь химических преобразований в клетках живых организмов. Эти катализируемые ферментами реакции позволяют организмам расти и воспроизводиться, поддерживать свои структуры и реагировать на окружающую среду. Слово метаболизм может также относиться ко всем химическим реакциям, которые происходят в живых организмах, включая пищеварение и перенос веществ в разные клетки и между ними, и в этом случае набор реакций внутри клеток называется промежуточным метаболизмом или промежуточным метаболизмом.

Метаболизм состоит из « катаболизм » и « анаболизм »; которые представляют собой накопление и разложение веществ. В области биологии метаболизм относится ко всем химическим процессам организма, перевариванию пищи и удалению отходов.

Клеточный метаболизм

Каждая живая клетка в организме человека проходит метаболизм, называемый клеточным метаболизмом. Многоклеточные организмы, такие как животные и растения, тоже.У людей общий метаболизм отличается от метаболизма отдельных клеток. Есть метаболические пути, которые образуют процесс, состоящий из двух частей; первая часть — это та, которая называется «катаболизм», во время которой организм перерабатывает пищу, чтобы использовать ее для получения энергии. Другая часть называется «анаболизм», когда организм человека использует пищу для восстановления или создания клеток. Обмен веществ прекращается только тогда, когда человек умирает.

Катаболизм

Термин «катаболизм» происходит от греческого слова «ката», что означает «пух».«Катаболизм — это процесс, состоящий из всех реакций, во время которых более крупные молекулы распадаются на более мелкие с высвобождением энергии. Примером этого процесса является переваривание белка, который затем расщепляется на аминокислоты, которые организм человека может поглощать и использовать в процессе метаболизма, сохраняя гликоген в печени для получения энергии. Химически этот процесс известен как «реакция окисления».

Анаболизм

Термин «анаболизм» происходит от греческого слова «Ана», что означает «вверх».«Анаболизм — это процесс, состоящий из всех реакций, в ходе которых сборка маленьких молекул превращается в более крупные, а затем сохраняется в виде энергии во вновь образованных химических связях. Примером этого является сборка аминокислот в более крупные белки и последующий синтез жира и гликогена для использования человеком в качестве энергии. Химически этот процесс синтеза известен как «реакция восстановления».

Определение скорости метаболизма

Термин «скорость метаболизма» относится к количеству химической энергии, которую человек высвобождает из своего тела в единицу времени.Химическая энергия — это то, что измеряется в калориях или количестве энергии, которое нагревает один грамм воды на один градус Цельсия. Калории легче измерять с помощью килокалорий, или «ккал». Один ккал — это 1000 калорий; то, что и на этикетках продуктов питания, и диетологи называют калорийностью с большой буквы. Скорость метаболизма человека обычно выражается в ккал в час или день. Один из способов измерить скорость метаболизма человека — это использование спирометра, который представляет собой устройство, измеряющее скорость потребления кислорода.На каждый литр кислорода, которым дышит человек, он расходует около 4,82 ккал энергии из гликогена или жира.

Скорость метаболизма человека зависит от определенных переменных, таких как голодание, уровень гормонов, физическая активность, психическое состояние и, в частности, гормон щитовидной железы. Общий уровень метаболизма (TMR) человека включает в себя его базовый уровень метаболизма (обсуждается ниже) в дополнение к его расходам энергии на другие виды деятельности. Уровень метаболизма человека повышается из-за физической активности, беспокойства, приема пищи, беременности, лихорадки или других факторов.Есть факторы, которые также могут снизить общий уровень метаболизма человека, например, апатия, депрессия или длительное голодание.

У детей TMR выше, чем у взрослых. Будучи людьми среднего возраста, они многократно набирают вес, даже если они не меняют своих привычек в еде. Люди, соблюдающие диету, могут разочароваться отчасти из-за того, что первоначальная потеря веса происходит из-за воды, которая быстро восстанавливается, а также из-за того, что их TMR со временем снижается. По мере того, как их диета прогрессирует, они сжигают меньше калорий и начинают синтезировать больше жира, даже при стабильном потреблении калорий.

Определение метаболических состояний

Существует два метаболических состояния, определяемых как «абсорбция» и «пост-абсорбция», которые определяются временем, прошедшим с момента приема пищи, и изменениями в переработке энергии его телом. Состояние «всасывания» длится около четырех часов как во время, так и после еды. Во время состояния абсорбции организм человека поглощает питательные вещества, которые он потреблял, использует некоторые из них для удовлетворения своих непосредственных потребностей и превращает излишки питательных веществ в энергию, которая сохраняется.Состояние всасывания регулируется в основном гормоном, называемым «инсулин», который способствует поглощению клетками глюкозы или сахара в крови, а также аминокислот, окислению глюкозы, синтезу жира и гликогена. Из-за быстрого поглощения глюкозы клетками уровень сахара в крови человека падает из-за инсулина.

Состояние «послеабсорбции» обычно возникает поздно утром, днем ​​и ночью, когда человек не ел в течение четырех или более часов. Во время постабсорбционного состояния желудок и тонкий кишечник человека пусты, и их метаболические потребности должны удовлетворяться за счет накопленной энергии.

Определение скорости основного обмена

Базальная скорость метаболизма (BMR) человека (калькулятор базальной скорости метаболизма) — это минимальная потребность в калориях, необходимая человеку для поддержания жизни во время отдыха. BMR человека может быть ответственным за сжигание до семидесяти процентов от общего количества потребляемых калорий, хотя эта цифра варьируется в зависимости от различных факторов. Такие процессы, как перекачивание крови, дыхание и поддержание температуры тела, сжигают калории. BMR человека является важнейшим фактором в определении его общей скорости метаболизма, а также количества калорий, необходимых для поддержания, потери или набора веса.BMR человека определяется сочетанием факторов окружающей среды и генетических факторов. Эти факторы включают:

  • Возраст: BMR человека уменьшается с возрастом; по прошествии двадцати лет их BMR падает примерно на два процента каждое десятилетие.
  • Процент телесного жира: люди с более низким процентом телесного жира имеют более высокий BMR. (Калькулятор процентного содержания жира в организме)
  • Площадь поверхности тела: Чем больше площадь поверхности тела человека, тем выше его BMR. У высоких и худых людей BMR выше.
  • Температура тела: при каждом повышении внутренней температуры тела человека на 0,5 ° С его BMR увеличивается примерно на семь процентов. Химические реакции в организме человека происходят быстрее при более высоких температурах. У человека с лихорадкой увеличивается BMR.
  • Диета: Резкое снижение калорийности или голодание может радикально снизить BMR человека до тридцати процентов. Ограничительная низкокалорийная диета может привести к снижению BMR человека на целых двадцать процентов.
  • Упражнение: упражнения помогают поднять BMR человека за счет наращивания дополнительной мышечной ткани и влияют на массу тела за счет сжигания калорий.
  • Внешняя температура: Температура вне тела человека также может влиять на его BMR. Низкие температуры могут вызвать увеличение BMR человека, хотя кратковременное воздействие повышенного тепла мало влияет на обмен веществ в организме. Продолжительное воздействие тепла может повысить BMR человека.
  • Пол: Мужчины, как правило, имеют большую мышечную массу и более низкий процент жира в организме, чем женщины, и, следовательно, имеют более высокий BMR.
  • Генетика: Некоторые люди рождаются с более медленным или более быстрым метаболизмом.
  • Железы: «Тироксин» — это регулятор BMR, вырабатываемый щитовидной железой, который ускоряет метаболическую активность человека. Чем больше тироксина вырабатывает щитовидная железа человека, тем выше будет его BMR. Если щитовидная железа человека производит слишком много тироксина, состояние, называемое «тритоксикоз», его BMR может удвоиться. Слишком низкое производство тироксина называется «микседемой» и может привести к снижению BMR человека до 30-40 процентов ниже нормы.Адреналин также может увеличить BMR человека, но в меньшей степени.
  • Вес: Чем больше человек весит, тем выше его BMR.

Атомная структура аденозинтрифосфата (АТФ), центрального промежуточного звена в энергетическом обмене.

Интересные факты метаболизма

  • Вопреки распространенному мнению, медленный метаболизм редко является причиной лишнего веса.
  • Анаболизм — это набор конструктивных метаболических процессов, при которых энергия, выделяемая при катаболизме, используется для синтеза сложных молекул.
  • Метаболизм включает в себя широкий спектр химических реакций, но большинство из них подпадают под несколько основных типов реакций, которые включают перенос функциональных групп атомов и их связей внутри молекул.
  • У худых людей почти всегда наблюдается более медленный метаболизм в состоянии покоя; их буквально меньше, чтобы сжечь в состоянии покоя.
  • Катаболизм углеводов — это расщепление углеводов на более мелкие единицы.
  • Метаболизм относится ко всем физическим и химическим процессам в организме, которые преобразуют или используют энергию.
  • Один из простых способов ускорить метаболизм — нарастить мышечную массу, подняв тяжести.
  • Метаболизм может сильно различаться. У женщины ростом 5 футов 2 дюйма и весом 130 фунтов может быть совершенно иной метаболизм, чем у другой женщины того же роста и веса.
  • Большинство структур, из которых состоят животные, растения и микробы, состоят из трех основных классов молекул: аминокислот, углеводов и липидов (часто называемых жирами).
  • Мужчины, у которых от природы более высокое соотношение мышечной массы и жира, склонны сжигать то, что они едят, быстрее, хотя у толстого мужчины может быть более медленный метаболизм, чем у стройных женщин с большим количеством мышечной ткани.
  • Ваш метаболизм регулируется небольшой железой в форме бабочки, известной как щитовидная железа.
Подтемы и связанные темы

О нас

Disabled World (Disabled-World.Com) — это независимое сообщество людей с ограниченными возможностями, созданное в 2004 году для предоставления новостей об инвалидности, обзоров вспомогательных технологий и спортивных мероприятий для людей с ограниченными возможностями, а также общей информации для людей. с ограниченными возможностями, пожилые люди, их семьи и / или лица, осуществляющие уход. Не забудьте заглянуть на наш веб-сайт, чтобы получить дополнительные информативные обзоры, эксклюзивные истории и инструкции.Вы также можете найти нас в Twitter, Facebook и LinkedIn.

* Заявление об ограничении ответственности: Disabled World предоставляет только общую информацию. Представленные материалы никоим образом не предназначены для замены профессиональной медицинской помощи квалифицированным практикующим врачом и не должны рассматриваться как таковые. Любое стороннее предложение или реклама на disabled-world.com не означает одобрения Disabled World. Ознакомьтесь с нашей Политикой в ​​отношении рекламы для получения дополнительной информации. Сообщите нам устаревшую или неточную информацию.

Цитируйте страницу: Журнал: Мир инвалидов . Язык: английский (США). Автор: Disabled World. Дата пересмотренной публикации: 21 марта 2019 г. Название: Метаболизм человека: факты и общая информация , источник: Метаболизм . Получено 07.05.2021, с сайта https://www.disabled-world.com/fitness/metabolism/ - Ссылка: DW # 273-17.172.98-6c.

Метаболизм — Энциклопедия Нового Света

Визуальный обзор метаболизма с упором на учет углерода.

Метаболизм (от μεταβολισμος, «метаболизм») — это биохимическая модификация химических соединений в живых организмах и клетках. Это включает в себя как анаболизм (биосинтез сложных органических молекул), так и катаболизм (распад сложных молекул с образованием как энергоносителей, так и основных строительных блоков), при этом продукты как анаболизма, так и катаболизма необходимы для поддержания, роста и движения. , и размножение.

Метаболизм включает сложные и часто интерактивные биохимические реакции, обычно поддерживаемые ферментами и часто координируемые анаболическими и катаболическими гормонами.Для целей анализа и концептуализации метаболизм обычно характеризуется в терминах метаболических путей, которые представляют собой определенную последовательность стадий, катализируемых ферментами. Общий обмен веществ включает в себя все биохимические процессы организма. Клеточный метаболизм включает в себя все химические процессы в клетке.

Метаболизм — это объединяющий аспект всех форм жизни, причем самые сложные формы жизни зависят от некоторых из тех же метаболических путей, что и у одноклеточных организмов. Знания о метаболизме накапливались за период более 400 лет, особенно в первой половине двадцатого века, благодаря экспериментам и исследованиям сотен ученых-исследователей.Основные метаболические процессы были синтезированы и стандартизированы в Таблицу промежуточного метаболизма . Ни один организм не использует все реакции на схеме, но все организмы используют некоторый набор реакций. Таблица промежуточного метаболизма вывешивается на стенах лабораторий биохимии и молекулярной биологии таким же образом, как и Периодическая таблица элементов на стенах химических лабораторий.

История

Санторио на безальных весах

Термин «метаболизм» происходит от греческого слова «изменение» или «ниспровержение».»

Первые контролируемые эксперименты по метаболизму человека были опубликованы Санторио Санторио (1561-1636) в 1614 году в его книге Ars de Statica Medecina, , которая прославила его на всю Европу. Он описал свою длинную серию экспериментов, в которых он взвешивался на стуле, подвешенном на безбашенных весах, до и после еды, сна, работы, секса, голодания, лишения питья и выделения. Он обнаружил, что большая часть пищи, которую он принимал, терялась из организма. через perspiratio invisensibilis (потливость без чувствительности).

Клеточный метаболизм

Клеточный метаболизм — это сумма множества текущих индивидуальных процессов, посредством которых живые клетки обрабатывают молекулы питательных веществ и поддерживают жизненное состояние.

Метаболизм имеет два отдельных подразделения.

  • Анаболизм — это набор процессов, в которых клетка использует энергию и восстанавливающую мощность (способность химически восстанавливать, то есть добавлять электроны к молекуле) для создания сложных молекул и выполнения других жизненных функций, таких как создание клеточной структуры.
  • Катаболизм — это набор процессов, в которых клетка разрушает сложные молекулы, чтобы получить молекулы, несущие энергию и снижающие мощность.

Несколько метаболических путей в клетке.

Клеточный метаболизм включает чрезвычайно сложные последовательности контролируемых химических реакций, называемых метаболическими путями.

Метаболические пути

Большое разнообразие метаболических путей организовано по двум темам, анаболизм и катаболизм, которые описаны ниже.

Анаболизм

Анаболизм — это часть метаболизма, которая создает более крупные молекулы.

Анаболизм — это набор метаболических процессов, которые создают органические соединения из более мелких компонентных молекул и в дальнейшем имеют тенденцию собирать их таким образом, чтобы «наращивать» органы и ткани. Эти процессы поддерживают рост и дифференциацию клеток, увеличение размеров тела и размножение. Примеры анаболических процессов включают рост и минерализацию костей и увеличение мышечной массы.

Анаболические пути, которые создают строительные блоки и соединения из простых предшественников, включают следующее:

  • Гликогенез (превращение глюкозы в гликоген, запасную молекулу для глюкозы)
  • Глюконеогенез (образование глюкозы из несахарных углеродных субстратов)
  • Путь синтеза порфирина (порфирин образует комплекс с атомом металла, таким как гем комплекса железо-порфирин, который находится в крови человека.)
  • Путь HMG-CoA редуктазы, ведущий к холестерину и изопреноидам.
  • Вторичные метаболические пути производят молекулы, которые не являются необходимыми для роста, развития или воспроизводства, но могут повысить выживаемость во время стресса окружающей среды.
  • Фотосинтез
    • Светозависимая реакция зеленых растений (световая реакция или реакция фотосинтеза, которая требует света)
    • Светонезависимая реакция растений (темновая реакция или реакция фотосинтеза, не требующая света для происходит)
  • Цикл Кальвина (реакция фотосинтеза, происходящая в строме хлоропластов)
  • Фиксация углерода (превращение углекислого газа в более крупные углеродные молекулы)
  • Глиоксилатный цикл (реакция, включающая превращение двух ацетил- Молекулы КоА в оксалоацетат)

Катаболизм

Катаболизм включает метаболические процессы, которые часто расщепляют молекулы на более мелкие единицы, а также дают молекулы, несущие энергию.Катаболические химические реакции в живой клетке разрушают большие полимерные молекулы клетки (полисахариды, нуклеиновые кислоты и белки) на составляющие их мономерные единицы (то есть моносахариды, нуклеотиды и аминокислоты соответственно).

Клетки используют мономеры для создания новых полимерных молекул или разборки их до простых клеточных метаболитов (молочная кислота, уксусная кислота, диоксид углерода, аммиак, мочевина и т. Д.).

Создание клеточных метаболитов — это процесс окисления, включающий высвобождение химической свободной энергии, часть которой теряется в виде тепла, а часть сохраняется, поскольку высвобождаемая энергия стимулирует синтез аденозинтрифосфата (АТФ).Гидролиз АТФ (то есть расщепление АТФ в реакции с водой) впоследствии используется для запуска почти каждой энергоемкой реакции в клетке. Таким образом, катаболизм обеспечивает химическую энергию, необходимую для поддержания жизнедеятельности клетки.

Примеры катаболических процессов включают расщепление мышечного белка с целью использования аминокислот в качестве субстратов для глюконеогенеза и расщепление жира в жировых клетках (жировые клетки) до жирных кислот.

Анаболические и катаболические сигналы

Поскольку одновременное протекание анаболических и катаболических процессов в клетках контрпродуктивно, существует множество сигналов, которые включают анаболические процессы и выключают катаболические процессы, и наоборот.Большинство известных сигналов — это гормоны и молекулы, участвующие в самом метаболизме. Эндокринологи (те, кто изучает эндокринную систему, систему желез без протоков, которые выделяют определенные гормоны в кровоток) традиционно классифицируют многие гормоны как анаболические или катаболические.

  • Классические анаболические гормоны включают
  • Классические катаболические гормоны включают
    • Кортизол
    • Глюкагон
    • Адреналин и другие катехоламины
    • Цитокины
  • были недавно идентифицированы как катаболические гормоны, которые недавно были ассоциированы с катаболическими гормонами. анаболические состояния включают
    • Орексин и гипокретин (пара гормонов)
    • Мелатонин

Общие пути

Четыре основных метаболических пути следующие:

Общие катаболические пути

В следующем разделе обсуждается катаболизм углеводов, катаболизм жиров, катаболизм жиров катаболизм белков и катаболизм нуклеиновых кислот.

Катаболизм углеводов

Катаболизм углеводов — это расщепление углеводов на более мелкие единицы. Эмпирическая формула углеводов, как и их мономерных аналогов, — C X (H 2Y O Y ). Углеводы буквально сгорают, когда клетка высвобождает и улавливает большое количество энергии в своих связях. Митохондрии клетки необходимы для катаболизма, поскольку они являются участками окислительного фосфорилирования, процесса переноса электронов, который преобразует высокоэнергетические молекулы НАДН, образующиеся в результате катаболизма углеводов, в наиболее легко транспортируемую и используемую в клетке молекулу энергии, аденозинтрифосфат (АТФ).

Гладкая эндоплазматическая сеть отвечает за некоторый углеводный обмен. Например, в печени клетка расщепляет полисахаридный гликоген. В конце концов, гликоген превратится в глюкозу и попадет в кровь, но сначала он расщепляется на фосфат глюкозы, ион, который, если высвободится, повредит клетки крови. Фермент, обнаруженный в мембране гладкой эндоплазматической сети, катализирует удаление фосфата с выделением чистой глюкозы.

Катаболизм жиров

Катаболизм жиров , также известный как катаболизм липидов , — это процесс, при котором липиды или фосфолипиды расщепляются липазами. Противоположностью катаболизма жиров является анаболизм жиров, связанный с накоплением энергии и построением мембран.

Катаболизм белков

Катаболизм белков — это расщепление белков на аминокислоты и простые производные соединения для транспорта в клетку через плазматическую мембрану и, в конечном итоге, для полимеризации в новые белки посредством совместного функционирования рибонуклеиновых кислот (РНК) и рибосомы.

Катаболизм жирных кислот

Жирные кислоты являются важным источником энергии для многих организмов. Триглицериды, или молекулы, которые хранят жирные кислоты, дают более чем в два раза больше энергии при той же массе, чем углеводы или белки. Все клеточные мембраны состоят из фосфолипидов, каждый из которых содержит две жирные кислоты. Жирные кислоты также обычно используются для модификации белков, и все стероидные гормоны в конечном итоге происходят из жирных кислот.

Метаболизм жирных кислот, таким образом, включает как катаболические процессы, которые генерируют энергию и первичные метаболиты из жирных кислот, так и анаболические процессы, которые создают биологически важные молекулы из жирных кислот и других пищевых источников углерода.

Жирные кислоты являются важным источником энергии, поскольку они являются восстановленными и безводными. Выход энергии из грамма жирных кислот составляет примерно 9 ккал (39 кДж) по сравнению с 4 ккал / г (17 кДж / г) для белков и углеводов. Поскольку жирные кислоты являются неполярными молекулами, они могут храниться в относительно безводной (безводной) среде. Углеводы, с другой стороны, более гидратированы и, следовательно, более поляризованы. Например, один грамм гликогена (из углеводов) может связать примерно два грамма воды, что соответствует 1.33 ккал / г (5,6 кДж / г). Это означает, что жирные кислоты могут удерживать в шесть раз больше энергии.

Другими словами, если бы человеческое тело полагалось на углеводы для хранения энергии, тогда человеку нужно было бы нести 67,5 фунтов (31 кг) гликогена, чтобы иметь энергию, эквивалентную десяти фунтам (пяти килограммам) жира.

Другой метаболизм

Метаболизм лекарств

Пути метаболизма лекарств используют специализированные ферментные системы для модификации или разложения лекарств и других ксенобиотических соединений (химические вещества, обнаруженные в организме, которые обычно не производятся или не ожидаются, либо присутствуют в необычно высоких концентрациях). концентрации).Примеры включают следующее:

  • Цитохром P450 оксидазная система
  • Флавинсодержащая монооксигеназная система
  • Алкогольный метаболизм

Азотный метаболизм

Азотный метаболизм включает пути обмена и выведения азота в организмах, а также биологические процессы биогеохимический цикл азота:

  • Цикл мочевины, важен для выделения азота в виде мочевины.
  • Биологическая фиксация азота
  • Ассимиляция азота
  • Нитрификация
  • Денитрификация

Ссылки

  • Alberts, B.2002. Молекулярная биология клетки, , четвертое издание. Наука о гирляндах. ISBN 0-8153-3577-6
  • Миттендорфер, Б. Половой диморфизм в метаболизме липидов человека. J. Nutr. 135: 681-686.
  • Радзюк, Дж. 1991. Печень и метаболизм гликогена. Журнал парентерального и энтерального питания 15 (3): 77S-81S

Кредиты

New World Encyclopedia писатели и редакторы переписали и завершили статью Wikipedia
в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в энциклопедию Нового Света :

Примечание. могут применяться ограничения на использование отдельных изображений, на которые распространяется отдельная лицензия.

(Почти) все, что вы знаете о метаболизме, неверно

Метаболизм: все жизненно важные химические реакции в организме. Элизиум Здоровье / Ори Тоор

Большинство из нас глубоко ошибочно понимают метаболизм. Если вам нужно доказательство этого, погуглите, «как работает метаболизм», и смотрите страницу за страницей с советами о том, как увеличить количество слов на букву «m» и сбросить вес. Идея о том, что метаболизм неразрывно связан с набором и похуданием, не ошибочна. Но ему не хватает леса за деревьями.Метаболизм — это сумма всех химических реакций, происходящих внутри тела, огромная сеть взаимодействий на молекулярном уровне, цель которых — удерживать организм (вас) в том, что биологи называют гомеостазом: состояние равновесия, лучше всего иллюстрируемое нашим почти постоянным телом. температура, которая сохраняется даже в широком диапазоне обстоятельств.


ОСОБЕННОСТИ

Метаболизм — это сумма всех химических реакций, происходящих в организме.

Ученые понимают метаболизм как сумму процессов разрушения, известных как «катаболизм», и наращивания «анаболизма», которые поддерживают жизнь.

На обмен веществ влияет множество факторов, включая возраст, гены, уровень стресса, сон и упражнения.


Ученые разделяют большинство химических реакций, составляющих метаболизм, на два процесса, которые происходят одновременно и постоянно.При катаболизме большие молекулы (многие из которых поступают из пищи) расщепляются для извлечения энергии и более мелких молекулярных строительных блоков. При анаболизме полученная энергия используется для сборки этих строительных блоков во что-то биологически полезное, например ткани и органы. Это тонкое уравновешивание и постоянные усилия вашего тела по выработке нужного количества энергии и нужного сырья для выживания. Наряду с вашими генами, метаболизм и факторы, влияющие на него, делают вас тем, кто вы есть. Хотя у него нет такого знакомого звона, как «вы то, что вы едите», «вы — ваш метаболизм» гораздо ближе к истине.

Для людей, которые хотят принимать здоровые решения, знание того, что метаболизм — это больше, чем рычаг для похудания, является важным шагом на пути к целостному пониманию того, как работает организм. Этот учебник поможет вам начать работу.

Организм будет справляться с различными обстоятельствами и по-прежнему найдет способ хорошо функционировать, но неправильное количество вводимых веществ — или совсем неправильные ингредиенты — создает нагрузку на метаболические пути. Элизиум Здоровье / Ори Тоор

Катаболизм и анаболизм, объяснение

Пищеварение — фактически важный первый шаг, который приведет вас от пережевывания пищи к поглощению ценных молекул в кишечнике.Катаболизм начинается внутри клетки, когда большие молекулы (также называемые макромолекулами), такие как углеводы, жиры и белки — основные компоненты еды, — распадаются на свои строительные блоки. Их называют мономерами, и они включают жирные кислоты, аминокислоты, нуклеотиды и моносахариды.

Все это происходит в цепочках химических реакций, называемых метаболическими путями, где ферменты реагируют с молекулой, а затем передают ее другому ферменту для следующей реакции, например, конвейерной линии, до тех пор, пока в конечном итоге не появится продукт, который используется или хранится.Во время многих из этих реакций выделяется энергия в форме аденозинтрифосфата или АТФ, небольшой молекулы, которая является источником энергии для большинства биологических процессов в организме. Конечным результатом является набор этих молекулярных строительных блоков пищи, которую вы съели, плюс АТФ, которые используются в другой половине метаболизма: анаболизме.

Анаболизм использует многие (но не все) те же ферменты и метаболические пути, что и катаболизм. Это означает, что многие части катаболизма и анаболизма происходят одновременно в одной и той же клетке.Во время анаболизма ферменты используют основанную на АТФ энергию, разблокированную во время катаболизма, для объединения мономеров обратно в более крупные макромолекулы, которые используются в организме в качестве материалов живых клеток, от тканей органа до костей и мышц.

Важно помнить, что метаболические пути являются частью сложной системы (вы можете увидеть все это здесь) с довольно простой целью — поддерживать ваш баланс в постоянно меняющейся среде, которая включает в себя количество пищи, которую вы едите. есть, сколько вы тренируетесь и многие другие факторы.Эта сеть постоянных реакций — основа для любого роста. Другой способ думать о реакциях на молекулярном уровне — сравнивать их с вашим собственным поведением на поверхностном уровне. Когда замерзнешь, накладываешь еще один слой; когда вы идете на пробежку, вы чувствуете жажду и пьете воду. Точно так же химические реакции, составляющие метаболизм, реагируют на их условия на клеточном уровне, чтобы вы продолжали гудеть.

Как метаболизм влияет на ваше здоровье?

Примечательно, что организм справляется с различными обстоятельствами и по-прежнему находит способ хорошо функционировать, но неправильное количество вводимых веществ — или совсем неправильные ингредиенты — создает нагрузку на метаболические пути.Допустим, вы съедаете тарелку сахара при каждом приеме пищи. Организм будет эффективно вырабатывать энергию в виде АТФ, если ему нужна эта энергия. В противном случае он может перенаправить основные молекулы углеводов, жиров и даже белков, которые вы едите, по различным метаболическим путям, которые сосредоточены на хранении, а не на создании энергии, результатом чего является жировая ткань или жировые отложения. Мало того, что весь этот сахар, вероятно, в конечном итоге будет храниться в виде жира, он также может вызвать нагрузку на метаболические пути, что со временем сделает их менее оптимальной.Большое количество неправильных вводимых данных может привести к метаболическим нарушениям, в том числе к инсулинорезистентности, которая является фактором риска диабета.

Хотя идея сложной сети химических реакций может показаться устрашающей, она также вдохновляет. Элизиум Здоровье / Ори Тоор

Метаболизм помимо еды: гены, стресс, упражнения

Пища и содержащиеся в ней питательные вещества являются основой метаболизма, но это лишь одна из многих переменных, которые на него влияют. Например, метаболизм тесно (и сложно) связан с циркадными ритмами, биологическими процессами, связанными с 24-часовым циклом.Хотя эта взаимосвязь до конца не изучена, исследования на животных показывают, что нарушение нормального цикла день-ночь путем прерывания сна или приема пищи в течение ночи может вызвать метаболические нарушения. А также ваш возраст, ваши гены, уровень стресса, а также то, занимаетесь ли вы (и когда) — все это влияет на метаболизм. Это потому, что организмы, как люди, не существуют в вакууме, как и наша сеть химических реакций, составляющих метаболизм.

Хотя идея сложной сети химических реакций может показаться устрашающей, она также вдохновляет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *